Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

15-09-2022

Modified Adaptive Mechanism for Optimising IEEE 802.15.4 WPANs for Wireless Sensor Networks

Authors: Sukhvinder Singh Bamber, Naveen Dogra, Mohit Angurala

Published in: Wireless Personal Communications

Login to get access
share
SHARE

Abstract

Different applications of wireless sensor networks (WSNs) have different expectations from the working of medium access control protocols. Some value reliability more than delay incurred while some demand a fair trade-off for the factors like: Throughput, bit error rate etc. This paper evaluates the performance of wireless personal area networks from 802.15.4 group for WSNs with modified algorithm which helps in reducing the medium access delay and delay in reaching of the packet from one end to another end. In this paper certain modifications to existing algorithm have been proposed for reducing the medium access delay and to reduce the number of packets dropped. The result comparisons on the performance parameters like: network output load, generated acknowledged traffic, media access delay, battery consumed and delay in packet transmission from one end to another end that the backoff number and exponent values used for transmission play vital role for improving the performance of WSNs as they directly affect the number of packets dropped, successfully acknowledged and medium access delay.
Literature
1.
go back to reference Koubaa, A., Alves, M., & Tovar, E. (2006). GTS allocation analysis in IEEE 802.15.4 for real-time wireless sensor networks. Koubaa, A., Alves, M., & Tovar, E. (2006). GTS allocation analysis in IEEE 802.15.4 for real-time wireless sensor networks.
2.
go back to reference Jurcik, P., Koubaa, A., Alves, M., Tovar, E., & Hanzalek, Z. (2007). A simulation model for the IEEE 802.15.4 protocol: Delay/throughput evaluation of the GTS mechanism. In MASCOTS 2007, 15th international symposium. Jurcik, P., Koubaa, A., Alves, M., Tovar, E., & Hanzalek, Z. (2007). A simulation model for the IEEE 802.15.4 protocol: Delay/throughput evaluation of the GTS mechanism. In MASCOTS 2007, 15th international symposium.
3.
go back to reference Angurala, M., Bala, M., & Khullar, V., (2022). A Survey on Various Congestion Control Techniques in Wireless Sensor Networks. International Journal on Recent and Innovation Trends in Computing and Communication, 10(8), 47–54. Angurala, M., Bala, M., & Khullar, V., (2022). A Survey on Various Congestion Control Techniques in Wireless Sensor Networks. International Journal on Recent and Innovation Trends in Computing and Communication, 10(8), 47–54.
4.
go back to reference Woo, S., Park, W., Ahn, S., An, S., & Kim, D. (2008). Knowledge-based exponential backoff scheme in IEEE 802.15.4 MAC (pp. 435–444). Woo, S., Park, W., Ahn, S., An, S., & Kim, D. (2008). Knowledge-based exponential backoff scheme in IEEE 802.15.4 MAC (pp. 435–444).
5.
go back to reference Lee, B. H., & Wu, H. K. (2009). Study on a delayed backoff algorithm for IEEE 802.15.4 low-rate wireless personal area networks. Communications IET, 3, 1089–1096. CrossRef Lee, B. H., & Wu, H. K. (2009). Study on a delayed backoff algorithm for IEEE 802.15.4 low-rate wireless personal area networks. Communications IET, 3, 1089–1096. CrossRef
6.
go back to reference Dahham, Z., Sali, A., Ali, B. M., & Jahan, M. S. (2012). An efficient CSMA-CA algorithm for IEEE 802.15.4 wireless sensor networks. 978-1-4673-4786-0/12/$31.00. IEEE. Dahham, Z., Sali, A., Ali, B. M., & Jahan, M. S. (2012). An efficient CSMA-CA algorithm for IEEE 802.15.4 wireless sensor networks. 978-1-4673-4786-0/12/$31.00. IEEE.
7.
go back to reference Lee, B.-H., & Wu, H.-K. (2010). Study on a dynamic superframe adjustment algorithm for IEEE 802.15.4 LR-WPAN. IEEE. Lee, B.-H., & Wu, H.-K. (2010). Study on a dynamic superframe adjustment algorithm for IEEE 802.15.4 LR-WPAN. IEEE.
8.
go back to reference Despaux, F., Song, Y., & Lahmadi, A. (2013). Measurement based analysis of the effect of duty cycle in IEEE 802.15.4 MAC performance. In IEEE international conference on mobile ad-hoc and sensor systems. Despaux, F., Song, Y., & Lahmadi, A. (2013). Measurement based analysis of the effect of duty cycle in IEEE 802.15.4 MAC performance. In IEEE international conference on mobile ad-hoc and sensor systems.
9.
go back to reference Angurala, M., Bala, M., & Bamber, S. S. A novel technique for energy replenishment and load balancing in wireless sensor networks, Optik, 248, 1–10. Angurala, M., Bala, M., & Bamber, S. S. A novel technique for energy replenishment and load balancing in wireless sensor networks, Optik, 248, 1–10.
10.
go back to reference Camila, O. H. S., Yacine, G.-D., & Stephane, L. (2013). A duty cycle self- adaptation algorithm for the 802.15. 4 wireless sensor networks. In IEEE transactions on global information infrastructure symposium (pp. 1–7). Camila, O. H. S., Yacine, G.-D., & Stephane, L. (2013). A duty cycle self- adaptation algorithm for the 802.15. 4 wireless sensor networks. In IEEE transactions on global information infrastructure symposium (pp. 1–7).
11.
go back to reference Rasouli, H., Kavian, Y. S., & Rashvand, H. F. (2014). ADCA: Adaptive duty cycle algorithm for energy efficient IEEE 802.15.4 beacon-enabled wireless sensor networks. IEEE Sensors Journal, 14(11), 3893–3902. CrossRef Rasouli, H., Kavian, Y. S., & Rashvand, H. F. (2014). ADCA: Adaptive duty cycle algorithm for energy efficient IEEE 802.15.4 beacon-enabled wireless sensor networks. IEEE Sensors Journal, 14(11), 3893–3902. CrossRef
12.
go back to reference Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2015). An energy and QoS-aware packet transmission algorithm for IEEE 802.15.4 networks. 978-1-4673-6782-0/15/$31.00. IEEE. Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2015). An energy and QoS-aware packet transmission algorithm for IEEE 802.15.4 networks. 978-1-4673-6782-0/15/$31.00. IEEE.
13.
go back to reference Lee, B.-H., Yundra, E., Wu, H.-K., & Al Rasyid, M. U. H. (2015). Analysis of superframe duration adjustment scheme for IEEE 802.15.4 networks. In ICUFN. Lee, B.-H., Yundra, E., Wu, H.-K., & Al Rasyid, M. U. H. (2015). Analysis of superframe duration adjustment scheme for IEEE 802.15.4 networks. In ICUFN.
14.
go back to reference Farhad, A., Farid, S., Zia, Y., & Hussain, F. B. (2016) A delay mitigation dynamic scheduling algorithm for the IEEE 802.15.4 based WPANs. Farhad, A., Farid, S., Zia, Y., & Hussain, F. B. (2016) A delay mitigation dynamic scheduling algorithm for the IEEE 802.15.4 based WPANs.
16.
go back to reference Santhameen, S., & Manikandan, J. (2022). Group acknowledgement mechanism for beacon-enabled wireless sensor networks. Computer Communications, 187, 93–102. CrossRef Santhameen, S., & Manikandan, J. (2022). Group acknowledgement mechanism for beacon-enabled wireless sensor networks. Computer Communications, 187, 93–102. CrossRef
17.
go back to reference Elshabrawy, T. (2015). Network throughput analysis of IEEE 802.15.4 enabled wireless sensor networks with FEC coding under external Interference. International Journal of Electronics and Communications, 69, 1641–1649. CrossRef Elshabrawy, T. (2015). Network throughput analysis of IEEE 802.15.4 enabled wireless sensor networks with FEC coding under external Interference. International Journal of Electronics and Communications, 69, 1641–1649. CrossRef
18.
go back to reference Ali, O., Ishak, M. H., & Bhatti, M. K. L. (2021). Adaptive clear channel assessment (A-CCA): Energy efficient method to improve wireless sensor networks (WSNs) operations. International Journal of Electronics and Communications, 131, 153603. CrossRef Ali, O., Ishak, M. H., & Bhatti, M. K. L. (2021). Adaptive clear channel assessment (A-CCA): Energy efficient method to improve wireless sensor networks (WSNs) operations. International Journal of Electronics and Communications, 131, 153603. CrossRef
19.
go back to reference Boughanmi, N., Song, Y. Q., & Rondeau, E. (2009). Online adaptation of the IEEE 802.15.4 parameters for wireless networked control systems. Sciencedirect, 42, 56–63. Boughanmi, N., Song, Y. Q., & Rondeau, E. (2009). Online adaptation of the IEEE 802.15.4 parameters for wireless networked control systems. Sciencedirect, 42, 56–63.
20.
go back to reference Gilani, M. H. S., Sarrafi, I., & Abbaspour, M. (2011). An adapative CSMA/TDMA hybrid MAC for energy and throughput improvement of wireless sensor networks. Ad Hoc Networks, 11, 1297–1304. CrossRef Gilani, M. H. S., Sarrafi, I., & Abbaspour, M. (2011). An adapative CSMA/TDMA hybrid MAC for energy and throughput improvement of wireless sensor networks. Ad Hoc Networks, 11, 1297–1304. CrossRef
21.
go back to reference Alberola, R. P., & Pesch, D. (2011). Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks. Ad Hoc Networks, 2012(10), 664–679. Alberola, R. P., & Pesch, D. (2011). Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks. Ad Hoc Networks, 2012(10), 664–679.
22.
go back to reference Xia, Y. Z. Y., & Anwar, M. (2016). GTS adaptation algorithm for IEEE 802.15.4 wireless networks. Ad Hoc Networks, 37, 486–498. CrossRef Xia, Y. Z. Y., & Anwar, M. (2016). GTS adaptation algorithm for IEEE 802.15.4 wireless networks. Ad Hoc Networks, 37, 486–498. CrossRef
23.
go back to reference Xiao, Z., Zhou, Yan, J., He, C., Jiang, L., & Trigoni, N. (2018). Performance evaluation of IEEE 802.15.4 with real time queuing analysis. Ad Hoc Networks, 73, 80–94. CrossRef Xiao, Z., Zhou, Yan, J., He, C., Jiang, L., & Trigoni, N. (2018). Performance evaluation of IEEE 802.15.4 with real time queuing analysis. Ad Hoc Networks, 73, 80–94. CrossRef
24.
go back to reference Mkongwa, K. G., Liu, Q., & Wang, S. (2021). An adapative backoff and dynamic clear channel assessment mechanisms in IEEE 802.15.4 MAC for wireless body area networks. Ad Hoc Networks, 120, 102554. CrossRef Mkongwa, K. G., Liu, Q., & Wang, S. (2021). An adapative backoff and dynamic clear channel assessment mechanisms in IEEE 802.15.4 MAC for wireless body area networks. Ad Hoc Networks, 120, 102554. CrossRef
25.
go back to reference Sixto, C., & Jorge, L. (2017). Scheduling the real-time transmission of periodic measurements in 802.15.4 wireless sensor networks. Procedia-Computer Science, 114, 499–506. CrossRef Sixto, C., & Jorge, L. (2017). Scheduling the real-time transmission of periodic measurements in 802.15.4 wireless sensor networks. Procedia-Computer Science, 114, 499–506. CrossRef
26.
go back to reference Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Goota, A., & Hu, Y. F. (2006). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30, 1655–1695. CrossRef Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Goota, A., & Hu, Y. F. (2006). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30, 1655–1695. CrossRef
27.
go back to reference Xia, F., Hao, R., Li, J., Xiong, N., Yang, L. T., & Zhang, Y. (2013). Adaptive GTS allocation in IEEE 802.15.4 for real-time wireless sensor networks. Journal of Systems Architecture, 59, 1231–1242. CrossRef Xia, F., Hao, R., Li, J., Xiong, N., Yang, L. T., & Zhang, Y. (2013). Adaptive GTS allocation in IEEE 802.15.4 for real-time wireless sensor networks. Journal of Systems Architecture, 59, 1231–1242. CrossRef
28.
go back to reference Alavi, S. M., Walsh, M. J., & Hayes, M. J. (2009). Robust distributed active power control technique for IEEE 802.15.4 wireless sensor networks—A quantative feedback theory approach. Control Engineering Practice, 17, 805–814. CrossRef Alavi, S. M., Walsh, M. J., & Hayes, M. J. (2009). Robust distributed active power control technique for IEEE 802.15.4 wireless sensor networks—A quantative feedback theory approach. Control Engineering Practice, 17, 805–814. CrossRef
29.
go back to reference Gezer, A., & Okdem, S. (2020). Improving IEEE 802.15.4 channel access performance for IoT and WSN devices. Computers and Electrical Engineering, 87, 106745. CrossRef Gezer, A., & Okdem, S. (2020). Improving IEEE 802.15.4 channel access performance for IoT and WSN devices. Computers and Electrical Engineering, 87, 106745. CrossRef
30.
go back to reference Berger, A., Pichler, M., Haselmayr, W., & Springer, A. (2014). Energy-efficient and reliable wireless sensor networks—An extension to IEEE 802.15.4e. EURASIP Journal of Wireless Communication and Networking, 2014, 1–12. CrossRef Berger, A., Pichler, M., Haselmayr, W., & Springer, A. (2014). Energy-efficient and reliable wireless sensor networks—An extension to IEEE 802.15.4e. EURASIP Journal of Wireless Communication and Networking, 2014, 1–12. CrossRef
31.
go back to reference Zhu, J., Lv, C., & Tao, Z. (2013). Performance analyses and improvements for IEEE 802.15.4 CSMA/CA Scheme in wireless multihop sensor networks based on HTC algorithm. International Journal of Distributed Sensor Networks, 213, 452423. CrossRef Zhu, J., Lv, C., & Tao, Z. (2013). Performance analyses and improvements for IEEE 802.15.4 CSMA/CA Scheme in wireless multihop sensor networks based on HTC algorithm. International Journal of Distributed Sensor Networks, 213, 452423. CrossRef
32.
go back to reference Park, P., Ergen, S. C., Fischione, C., & Vincentelli, A. S. (2013). Duty-cycle optimization for IEEE 802.15.4 wireless sensor networks. ACM Transactions on Sensor Networks, 10(1), 12. CrossRef Park, P., Ergen, S. C., Fischione, C., & Vincentelli, A. S. (2013). Duty-cycle optimization for IEEE 802.15.4 wireless sensor networks. ACM Transactions on Sensor Networks, 10(1), 12. CrossRef
33.
go back to reference Dbibih, I., Iala, I., Biach, F. Z. E., & Zytoune, O. (2021). An efficient algorithm for end to end latency optimization over IEEE 802.15.4 wireless network for IoT applications. International Journal of Intelligent Engineering & Systems, 14(5), 336–347. CrossRef Dbibih, I., Iala, I., Biach, F. Z. E., & Zytoune, O. (2021). An efficient algorithm for end to end latency optimization over IEEE 802.15.4 wireless network for IoT applications. International Journal of Intelligent Engineering & Systems, 14(5), 336–347. CrossRef
34.
go back to reference Haghighi, M. S., Xiang, Y., Varadharajan, V., & Quinn, B. (2015). A stochastic time-domain model for burst data aggregation in IEEE 802.15.4 wireless sensor networks. IEEE Transactions on Computers, 64(3), 627–639. MathSciNetCrossRef Haghighi, M. S., Xiang, Y., Varadharajan, V., & Quinn, B. (2015). A stochastic time-domain model for burst data aggregation in IEEE 802.15.4 wireless sensor networks. IEEE Transactions on Computers, 64(3), 627–639. MathSciNetCrossRef
35.
go back to reference Bartoli, G., Chiti, F., Fantacci, R., & Picano, B. (2019). An efficient resource allocation scheme for applications in LR-WPANs based on stable matching with externalities approach. IEEE Transactions on Vehicular Technology, 68(6), 5893–5903. CrossRef Bartoli, G., Chiti, F., Fantacci, R., & Picano, B. (2019). An efficient resource allocation scheme for applications in LR-WPANs based on stable matching with externalities approach. IEEE Transactions on Vehicular Technology, 68(6), 5893–5903. CrossRef
36.
go back to reference Lattanzi, E., Capellacci, P., & Freschi, V. (2020). experimental evaluation of the impact of packet length on wireless sensor networks subject to interference. Computer Networks, 2019(167), 106986. CrossRef Lattanzi, E., Capellacci, P., & Freschi, V. (2020). experimental evaluation of the impact of packet length on wireless sensor networks subject to interference. Computer Networks, 2019(167), 106986. CrossRef
37.
go back to reference Zhu, Y. H., Jia, L., & Zhang, Y. (2022). Enhancing channel contention efficiency in IEEE 802.15.4 wireless networks. Sensors, 22(4), 1600. CrossRef Zhu, Y. H., Jia, L., & Zhang, Y. (2022). Enhancing channel contention efficiency in IEEE 802.15.4 wireless networks. Sensors, 22(4), 1600. CrossRef
Metadata
Title
Modified Adaptive Mechanism for Optimising IEEE 802.15.4 WPANs for Wireless Sensor Networks
Authors
Sukhvinder Singh Bamber
Naveen Dogra
Mohit Angurala
Publication date
15-09-2022
Publisher
Springer US
Published in
Wireless Personal Communications
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-10005-8