Skip to main content
Top

2024 | OriginalPaper | Chapter

Modified Adomian Decomposition Method for Solving Volterra Integro-Differential Equations

Authors : Nidal Anakira, Gada Bani-Hani, Osama Ababneh, Ali Jameel, Khamis Al-Kalbani

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research article effectively demonstrates the implementation of the modified Adomian decomposition method (MADM). Using a numerical procedure called MADM, some classes of Volterra integro differential equations can be solved can be solved with easily computational and high degree of acuracy. The procedure relies on ADM approximate series solutions, Laplace transform, and Pade approximants. The efficacy and dependability of MADM is tested through a numerical example. The results acquired reveal that the provided approach is highly effective and robust in addressing this differential equation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tatari, M., Dehghan, M., Razzaghi, M.: Application of the Adomian decomposition method for the Fokker-Planck equation. Math. Comput. Modell. 45(5–6), 639–650 (2007)MathSciNetCrossRef Tatari, M., Dehghan, M., Razzaghi, M.: Application of the Adomian decomposition method for the Fokker-Planck equation. Math. Comput. Modell. 45(5–6), 639–650 (2007)MathSciNetCrossRef
2.
go back to reference Jameel, A.F., Anakira, N.R., Alomari, A.K., Al-Mahameed, M., Saaban, A.: A new approximate solution of the fuzzy delay differential equations. Int. J. Math. Model. Numer. Optim. 9(3), 221–240 (2019) Jameel, A.F., Anakira, N.R., Alomari, A.K., Al-Mahameed, M., Saaban, A.: A new approximate solution of the fuzzy delay differential equations. Int. J. Math. Model. Numer. Optim. 9(3), 221–240 (2019)
3.
go back to reference Yang, X.J., Srivastava, H.M., Cattani, C.: Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics. Roman. Rep. Phys. 67(3), 752–761 (2015) Yang, X.J., Srivastava, H.M., Cattani, C.: Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics. Roman. Rep. Phys. 67(3), 752–761 (2015)
4.
go back to reference Jameel, A., Anakira, N.R., Alomari, A.K., Man, N.H.: Solution and analysis of the fuzzy Volterra integral equations via homotopy analysis method. Comput. Model. Eng. Sci. 127(3), 875–899 (2021) Jameel, A., Anakira, N.R., Alomari, A.K., Man, N.H.: Solution and analysis of the fuzzy Volterra integral equations via homotopy analysis method. Comput. Model. Eng. Sci. 127(3), 875–899 (2021)
5.
go back to reference Soltanian, F., Dehghan, M., Karbassi, S.M.: Solution of the differential algebraic equations via homotopy perturbation method and their engineering applications. Int. J. Comput. Math. 87(9), 1950–1974 (2010)MathSciNetCrossRef Soltanian, F., Dehghan, M., Karbassi, S.M.: Solution of the differential algebraic equations via homotopy perturbation method and their engineering applications. Int. J. Comput. Math. 87(9), 1950–1974 (2010)MathSciNetCrossRef
6.
go back to reference Turkyilmazoglu, M.: Equivalence of ratio and residual approaches in the homotopy analysis method and some applications in nonlinear science and engineering. Comput. Model. Eng. Sci. 120(1), 63–81 (2019) Turkyilmazoglu, M.: Equivalence of ratio and residual approaches in the homotopy analysis method and some applications in nonlinear science and engineering. Comput. Model. Eng. Sci. 120(1), 63–81 (2019)
7.
go back to reference Al-Hawary, T., Amourah, A., Alsoboh, A., Alsalhi, O.: A new comprehensive subclass of analytic bi-univalent functions related to gegenbauer polynomials. Symmetry 15(3), 576 (2023)CrossRef Al-Hawary, T., Amourah, A., Alsoboh, A., Alsalhi, O.: A new comprehensive subclass of analytic bi-univalent functions related to gegenbauer polynomials. Symmetry 15(3), 576 (2023)CrossRef
8.
go back to reference Hashim, D.J., Jameel, A.F., Ying, T.Y., Alomari, A.K., Anakira, N.R.: Optimal homotopy asymptotic method for solving several models of first order fuzzy fractional IVPs. Alexan. Eng. J. 61(6), 4931–4943 (2022)CrossRef Hashim, D.J., Jameel, A.F., Ying, T.Y., Alomari, A.K., Anakira, N.R.: Optimal homotopy asymptotic method for solving several models of first order fuzzy fractional IVPs. Alexan. Eng. J. 61(6), 4931–4943 (2022)CrossRef
9.
go back to reference Marinca, V., Herişanu, N., Nemeş, I.: Optimal homotopy asymptotic method with application to thin film flow. Open Phys. 6(3), 648–653 (2008)CrossRef Marinca, V., Herişanu, N., Nemeş, I.: Optimal homotopy asymptotic method with application to thin film flow. Open Phys. 6(3), 648–653 (2008)CrossRef
10.
go back to reference Marinca, V., Herişanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Transf. 35(6), 710–715 (2008)CrossRef Marinca, V., Herişanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Transf. 35(6), 710–715 (2008)CrossRef
11.
go back to reference Al-Ahmad, S., Mamat, M., Anakira, N., Alahmad, R.: Modified Differential Transformation Method for Solving Classes of Non-Linear Differential Equations (2022) Al-Ahmad, S., Mamat, M., Anakira, N., Alahmad, R.: Modified Differential Transformation Method for Solving Classes of Non-Linear Differential Equations (2022)
12.
go back to reference El-Zahar, E.R.: Applications of adaptive multi step differential transform method to singular perturbation problems arising in science and engineering. Appl. Math. Inform. Sci. 9(1), 223 (2015)CrossRef El-Zahar, E.R.: Applications of adaptive multi step differential transform method to singular perturbation problems arising in science and engineering. Appl. Math. Inform. Sci. 9(1), 223 (2015)CrossRef
13.
go back to reference Anakira, N.R., Alomari, A.K., Hashim, I.: Application of optimal homotopy asymptotic method for solving linear delay differential equations. In: AIP Conference Proceedings, Vol. 1571, pp. 1013–1019. American Institute of Physics (2013) Anakira, N.R., Alomari, A.K., Hashim, I.: Application of optimal homotopy asymptotic method for solving linear delay differential equations. In: AIP Conference Proceedings, Vol. 1571, pp. 1013–1019. American Institute of Physics (2013)
14.
go back to reference Rawashdeh, M.: Using the reduced differential transform method to solve nonlinear PDEs arises in biology and physics. World Appl. Sci. J. 23(8), 1037–1043 (2013) Rawashdeh, M.: Using the reduced differential transform method to solve nonlinear PDEs arises in biology and physics. World Appl. Sci. J. 23(8), 1037–1043 (2013)
15.
go back to reference Amourah, A.: Initial bounds for analytic and bi-univalent functions by means of (p, q)-Chebyshev polynomials defined by differential operator. Gener. Lett. Math. 7, 2 (2019) Amourah, A.: Initial bounds for analytic and bi-univalent functions by means of (p, q)-Chebyshev polynomials defined by differential operator. Gener. Lett. Math. 7, 2 (2019)
16.
go back to reference Larsson, S., Thomée, V., Wahlbin, L.: Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comput. 67(221), 45–71 (1998)MathSciNetCrossRef Larsson, S., Thomée, V., Wahlbin, L.: Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comput. 67(221), 45–71 (1998)MathSciNetCrossRef
17.
go back to reference Mamadu, J.E., Njoseh, I.N.: Numerical solutions of Volterra equations using Galerkin method with certain orthogonal polynomials. J. Appl. Math. Phys. 4(2), 367–382 (2016)CrossRef Mamadu, J.E., Njoseh, I.N.: Numerical solutions of Volterra equations using Galerkin method with certain orthogonal polynomials. J. Appl. Math. Phys. 4(2), 367–382 (2016)CrossRef
18.
go back to reference Zhang, S., Lin, Y., Rao, M.: Numerical solutions for second-kind Volterra integral equations by Galerkin methods. Appl. Math. 45, 19–39 (2000)MathSciNetCrossRef Zhang, S., Lin, Y., Rao, M.: Numerical solutions for second-kind Volterra integral equations by Galerkin methods. Appl. Math. 45, 19–39 (2000)MathSciNetCrossRef
19.
go back to reference Al-Ahmad, S., Anakira, N.R., Mamat, M., Jameel, A.F., Alahmad, R., Alomari, A.K.: Accurate Approximate Solution of Classes of Boundary Value Problems Using Modified Differential Transform Method (2022) Al-Ahmad, S., Anakira, N.R., Mamat, M., Jameel, A.F., Alahmad, R., Alomari, A.K.: Accurate Approximate Solution of Classes of Boundary Value Problems Using Modified Differential Transform Method (2022)
20.
go back to reference El-Kady, M., El-Sayed, S.M., Fathy, H.E.: Development of Galerkin method for solving the generalized Burger's-Huxley equation. Math. Probl. Eng. (2013) El-Kady, M., El-Sayed, S.M., Fathy, H.E.: Development of Galerkin method for solving the generalized Burger's-Huxley equation. Math. Probl. Eng. (2013)
21.
go back to reference Jameel, A.F., Shather, A.H., Anakira, N.R., Alomari, A.K., Saaban, A.: Comparison for the approximate solution of the second-order fuzzy nonlinear differential equation with fuzzy initial conditions. Math. Stat. 8(5), 527–534 (2020)CrossRef Jameel, A.F., Shather, A.H., Anakira, N.R., Alomari, A.K., Saaban, A.: Comparison for the approximate solution of the second-order fuzzy nonlinear differential equation with fuzzy initial conditions. Math. Stat. 8(5), 527–534 (2020)CrossRef
22.
go back to reference Wazwaz, A.M.: The variational iteration method for solving linear and nonlinear Volterra integral and integro-differential equations. Int. J. Comput. Math. 87(5), 1131–1141 (2010)CrossRef Wazwaz, A.M.: The variational iteration method for solving linear and nonlinear Volterra integral and integro-differential equations. Int. J. Comput. Math. 87(5), 1131–1141 (2010)CrossRef
23.
go back to reference Abbasbandy, S., Shivanian, E.: Application of the variational iteration method to nonlinear Volterra’s integro-differential equations. Zeitschrift für Naturforschung A 63(9), 538–542 (2008)CrossRef Abbasbandy, S., Shivanian, E.: Application of the variational iteration method to nonlinear Volterra’s integro-differential equations. Zeitschrift für Naturforschung A 63(9), 538–542 (2008)CrossRef
24.
go back to reference Jameel, A., Anakira, N.R., Alomari, A.K., Hashim, I., Shakhatreh, M.A.: Numerical solution of n’th order fuzzy initial value problems by six stages. J Nonlinear Sci. Appl. 9(2), 627–640 (2016)MathSciNetCrossRef Jameel, A., Anakira, N.R., Alomari, A.K., Hashim, I., Shakhatreh, M.A.: Numerical solution of n’th order fuzzy initial value problems by six stages. J Nonlinear Sci. Appl. 9(2), 627–640 (2016)MathSciNetCrossRef
25.
go back to reference Alomari, A.K., Anakira, N.R., Hashim, I.: Multiple solutions of problems in fluid mechanics by predictor optimal homotopy asymptotic method. Adv. Mech. Eng. 6, 372537 (2014)CrossRef Alomari, A.K., Anakira, N.R., Hashim, I.: Multiple solutions of problems in fluid mechanics by predictor optimal homotopy asymptotic method. Adv. Mech. Eng. 6, 372537 (2014)CrossRef
26.
go back to reference Anakira, N.R., Alomari, A.K., Jameel, A.F., Hashim, I.: Multistage optimal homotopy asymptotic method for solving boundary value problems with robin boundary conditions. Far East J. Math. Sci. 102(8), 1727–1744 (2017) Anakira, N.R., Alomari, A.K., Jameel, A.F., Hashim, I.: Multistage optimal homotopy asymptotic method for solving boundary value problems with robin boundary conditions. Far East J. Math. Sci. 102(8), 1727–1744 (2017)
27.
go back to reference Yıldırım, A.: Variational iteration method for modified Camassa-Holm and Degasperis-Procesi equations. Int. J. Numer. Methods Biomed. Eng. 26(2), 266–272 (2010)MathSciNetCrossRef Yıldırım, A.: Variational iteration method for modified Camassa-Holm and Degasperis-Procesi equations. Int. J. Numer. Methods Biomed. Eng. 26(2), 266–272 (2010)MathSciNetCrossRef
28.
go back to reference Singh, G., Singh, I.: New Laplace variational iterative technique to solve two-dimensional Schrodinger equations. Mater. Today Proceed. 62, 3995–4000 (2022)CrossRef Singh, G., Singh, I.: New Laplace variational iterative technique to solve two-dimensional Schrodinger equations. Mater. Today Proceed. 62, 3995–4000 (2022)CrossRef
29.
go back to reference Anakira, N.R.: Optimal homotopy asymptotic method for solving multi-pantograph type delay differential equations. Adv. Differ. Equ. Control Proc. 19(3), 191–204 (2018)MathSciNet Anakira, N.R.: Optimal homotopy asymptotic method for solving multi-pantograph type delay differential equations. Adv. Differ. Equ. Control Proc. 19(3), 191–204 (2018)MathSciNet
30.
go back to reference Zeidan, D., Chau, C.K., Lu, T.T.: On the characteristic Adomian decomposition method for the Riemann problem. Math. Methods Appl. Sci. 44(10), 8097–8112 (2021)MathSciNetCrossRef Zeidan, D., Chau, C.K., Lu, T.T.: On the characteristic Adomian decomposition method for the Riemann problem. Math. Methods Appl. Sci. 44(10), 8097–8112 (2021)MathSciNetCrossRef
31.
go back to reference Zeidan, D., Chau, C.K., Lu, T.T., Zheng, W.Q.: Mathematical studies of the solution of Burgers’ equations by Adomian decomposition method. Math. Methods Appl. Sci. 43(5), 2171–2188 (2020)MathSciNetCrossRef Zeidan, D., Chau, C.K., Lu, T.T., Zheng, W.Q.: Mathematical studies of the solution of Burgers’ equations by Adomian decomposition method. Math. Methods Appl. Sci. 43(5), 2171–2188 (2020)MathSciNetCrossRef
32.
go back to reference Zeidan, D., Chau, C.K., Lu, T.T.: On the development of Adomian decomposition method for solving PDE systems with non-prescribed data. Comput. Appl. Math. 41(3), 87 (2022)MathSciNetCrossRef Zeidan, D., Chau, C.K., Lu, T.T.: On the development of Adomian decomposition method for solving PDE systems with non-prescribed data. Comput. Appl. Math. 41(3), 87 (2022)MathSciNetCrossRef
Metadata
Title
Modified Adomian Decomposition Method for Solving Volterra Integro-Differential Equations
Authors
Nidal Anakira
Gada Bani-Hani
Osama Ababneh
Ali Jameel
Khamis Al-Kalbani
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_23

Premium Partner