2017 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
The Big Bang–Big Crunch (BB–BC) method developed by Erol and Eksin [1] consists of two phases: a Big Bang phase and a Big Crunch phase. In the Big Bang phase, candidate solutions are randomly distributed over the search space. Similar to other evolutionary algorithms, initial solutions are spread all over the search space in a uniform manner in the first Big Bang. Erol and Eksin [1] associated the random nature of the Big Bang to energy dissipation or the transformation from an ordered state (a convergent solution) to a disorder or chaos state (new set of solution candidates).
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference Erol OK, Eksin I (2006) New optimization method: Big Bang–Big Crunch. Adv Eng Softw 37:106–111 CrossRef Erol OK, Eksin I (2006) New optimization method: Big Bang–Big Crunch. Adv Eng Softw 37:106–111
CrossRef
2.
go back to reference Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang–Big Crunch algorithm. Comput Struct 87:1129–1140 CrossRef Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang–Big Crunch algorithm. Comput Struct 87:1129–1140
CrossRef
3.
go back to reference Kaveh A, Talatahari S (2010) Optimal design of Schwedler and ribbed domes; hybrid Big Bang-Big Crunch algorithm. J Constr Steel Res 66:412–419 CrossRef Kaveh A, Talatahari S (2010) Optimal design of Schwedler and ribbed domes; hybrid Big Bang-Big Crunch algorithm. J Constr Steel Res 66:412–419
CrossRef
4.
go back to reference Kaveh A, Farahmand Azar B, Talatahari S (2008) Ant colony optimization for design of space trusses. Int J Space Struct 23(3):167–181 CrossRef Kaveh A, Farahmand Azar B, Talatahari S (2008) Ant colony optimization for design of space trusses. Int J Space Struct 23(3):167–181
CrossRef
5.
go back to reference Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, UK Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, UK
6.
go back to reference Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27(1):155–182 CrossRefMATH Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27(1):155–182
CrossRefMATH
7.
go back to reference He S, Wu QH, Wen JY, Saunders JR, Paton RC (2004) A particle swarm optimizer with passive congregation. Biosystem 78:135–147 CrossRef He S, Wu QH, Wen JY, Saunders JR, Paton RC (2004) A particle swarm optimizer with passive congregation. Biosystem 78:135–147
CrossRef
8.
go back to reference Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng ASCE 118(5):1233–1250 CrossRef Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng ASCE 118(5):1233–1250
CrossRef
9.
go back to reference Camp CV, Bichon J (2005) Design of steel frames using ant colony optimization. J Struct Eng ASCE 131:369–379 CrossRef Camp CV, Bichon J (2005) Design of steel frames using ant colony optimization. J Struct Eng ASCE 131:369–379
CrossRef
10.
go back to reference Kaveh A, Shojaee S (2007) Optimal design of skeletal structures using ant colony optimisation. Int J Numer Methods Eng 70(5):563–581 CrossRefMATH Kaveh A, Shojaee S (2007) Optimal design of skeletal structures using ant colony optimisation. Int J Numer Methods Eng 70(5):563–581
CrossRefMATH
11.
go back to reference Van Laarhoven PJM, Aarts EHL (1998) Simulated annealing, theory and applications. Kluwer Academics Publishers, Boston MATH Van Laarhoven PJM, Aarts EHL (1998) Simulated annealing, theory and applications. Kluwer Academics Publishers, Boston
MATH
12.
go back to reference Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, IT (in Italian) Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, IT (in Italian)
13.
go back to reference Dorigo M, Caro GD, Gambardella LM (1999) An algorithm for discrete optimization. Artif Life 5:137–172 CrossRef Dorigo M, Caro GD, Gambardella LM (1999) An algorithm for discrete optimization. Artif Life 5:137–172
CrossRef
14.
go back to reference Camp CV (2007) Design of space trusses using Big Bang–Big Crunch optimization. J Struct Eng ASCE 133:999–1008 CrossRef Camp CV (2007) Design of space trusses using Big Bang–Big Crunch optimization. J Struct Eng ASCE 133:999–1008
CrossRef
15.
go back to reference Kaveh A, Talatahari S (2008) A hybrid particle swarm and ant colony optimization for design of truss structures. Asian J Civil Eng 9(4):329–348 Kaveh A, Talatahari S (2008) A hybrid particle swarm and ant colony optimization for design of truss structures. Asian J Civil Eng 9(4):329–348
16.
go back to reference Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283 CrossRef Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283
CrossRef
17.
go back to reference Schutte JJ, Groenwold AA (2003) Sizing design of truss structures using particle swarms. Struct Multidiscip Optim 25:261–269 CrossRef Schutte JJ, Groenwold AA (2003) Sizing design of truss structures using particle swarms. Struct Multidiscip Optim 25:261–269
CrossRef
18.
go back to reference Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798 CrossRef Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798
CrossRef
19.
go back to reference Camp CV, Bichon J (2004) Design of space trusses using ant colony optimization. J Struct Eng ASCE 130(5):741–751 CrossRef Camp CV, Bichon J (2004) Design of space trusses using ant colony optimization. J Struct Eng ASCE 130(5):741–751
CrossRef
20.
go back to reference Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85:1579–1588 CrossRef Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85:1579–1588
CrossRef
21.
go back to reference Erbatur F, Hasancebi O, Tutuncil I, Kihc H (2000) Optimal design of planar and space structures with genetic algorithms. Comput Struct 75:209–224 CrossRef Erbatur F, Hasancebi O, Tutuncil I, Kihc H (2000) Optimal design of planar and space structures with genetic algorithms. Comput Struct 75:209–224
CrossRef
22.
go back to reference American Institute of Steel Construction (AISC) (1989) Manual of steel construction-allowable stress design, 9th edn. AISC, Chicago, IL American Institute of Steel Construction (AISC) (1989) Manual of steel construction-allowable stress design, 9th edn. AISC, Chicago, IL
23.
go back to reference Salajegheh E, Vanderplaats GN (1986/87) An efficient approximation method for structural synthesis with reference to space structures. Int J Space Struct 2:165–175 Salajegheh E, Vanderplaats GN (1986/87) An efficient approximation method for structural synthesis with reference to space structures. Int J Space Struct 2:165–175
24.
go back to reference Saka MP, Kameshki ES (1998) Optimum design of nonlinear elastic framed domes. Adv Eng Softw 29(7–9):519–528 CrossRefMATH Saka MP, Kameshki ES (1998) Optimum design of nonlinear elastic framed domes. Adv Eng Softw 29(7–9):519–528
CrossRefMATH
25.
go back to reference Makowski ZS (1984) Analysis, design and construction of braced domes. Granada Publishing Ltd., London Makowski ZS (1984) Analysis, design and construction of braced domes. Granada Publishing Ltd., London
26.
go back to reference Coates RC, Coutie MG, Kong FK (1972) Structural analysis. Thomas Nelson & Sons Ltd., UK CrossRef Coates RC, Coutie MG, Kong FK (1972) Structural analysis. Thomas Nelson & Sons Ltd., UK
CrossRef
27.
go back to reference Saka MP (2007) Optimum geometry design of geodesic domes using harmony search algorithm. Adv Struct Eng 10:595–606 CrossRef Saka MP (2007) Optimum geometry design of geodesic domes using harmony search algorithm. Adv Struct Eng 10:595–606
CrossRef
28.
go back to reference Saka MP (2007) Optimum topological design of geometrically nonlinear single layer latticed domes using coupled genetic algorithm. Comput Struct 85:1635–1646 CrossRef Saka MP (2007) Optimum topological design of geometrically nonlinear single layer latticed domes using coupled genetic algorithm. Comput Struct 85:1635–1646
CrossRef
29.
go back to reference American Institute of Steel Construction (AISC) (1991) Manual of steel construction-load resistance factor design, 3rd edn. AISC, Chicago, IL American Institute of Steel Construction (AISC) (1991) Manual of steel construction-load resistance factor design, 3rd edn. AISC, Chicago, IL
30.
go back to reference Ekhande SG, Selvappalam M, Madugula KS (1989) Stability functions for three-dimensional beam-columns. J Struct Eng ASCE 115:467–479 CrossRef Ekhande SG, Selvappalam M, Madugula KS (1989) Stability functions for three-dimensional beam-columns. J Struct Eng ASCE 115:467–479
CrossRef
- Title
- Modified Big Bang–Big Crunch Algorithm
- DOI
- https://doi.org/10.1007/978-3-319-46173-1_9
- Author:
-
A. Kaveh
- Publisher
- Springer International Publishing
- Sequence number
- 9
- Chapter number
- Chapter 9