Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Modified Hyper-Viscoelastic Constitutive Model for Elastomeric Materials

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Elastomers constitute an essential group of materials that are widely used in the automotive, aerospace industry, biomedical, microfluidic and signal processing applications. Elastomeric materials undergo large deformations without fracture and exhibit time dependency under a prescribed displacement or load. Characterization of elastomeric materials can be challenging, hence the use of a proper constitutive model that captures the behavior of elastomeric materials is essential. Experimental data obtained from simple uniaxial tension tests and creep tests performed at various constant stress levels using dog bone samples were used to approximate hyperelasticity and the time-dependent responses of the material respectively. The experimental results suggested that the instantaneous strains were largely responsible for the nonlinear behavior of the material. Thus, a rheological hyper-viscoelastic constitutive model consisting of a nonlinear spring, which would capture the nonlinear instantaneous strains, and a two parameter Kelvin-Voight model, which would model the linear time-dependent strain responses, was developed. The Mooney-Rivlin model, a classic phenomenological hyperelastic model, was used to represent the nonlinear spring. The resulting hyper-visco constitutive model, which obeys the Boltzmann’s superposition principle, was used for numerical predictions of time-dependent behavior of this material in a commercial finite element software (Abaqus). The creep deformations predicted using this approach demonstrated good consistency with experimental results over the applied range of stresses and the duration of time measurements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Maitz, M.F.: Applications of synthetic polymers in clinical medicine. Biosurface Biotribol. 1(3), 161–176 (2015)CrossRef Maitz, M.F.: Applications of synthetic polymers in clinical medicine. Biosurface Biotribol. 1(3), 161–176 (2015)CrossRef
2.
go back to reference Das, P.S., Park, J.-Y.: A flexible touch sensor based on conductive elastomer for biopotential monitoring applications. Biomed. Signal Process. Control. 33, 72–82 (2017)CrossRef Das, P.S., Park, J.-Y.: A flexible touch sensor based on conductive elastomer for biopotential monitoring applications. Biomed. Signal Process. Control. 33, 72–82 (2017)CrossRef
3.
go back to reference Alnaimat, F.A., Shepherd, D.E.T., Dearn, K.D.: Crack growth in medical-grade silicone and polyurethane ether elastomers. Polym. Test. 62, 225 (2017)CrossRef Alnaimat, F.A., Shepherd, D.E.T., Dearn, K.D.: Crack growth in medical-grade silicone and polyurethane ether elastomers. Polym. Test. 62, 225 (2017)CrossRef
4.
go back to reference Yu, S., Ng, S.P., Wang, Z., Tham, C.L., Soh, Y.C.: Thermal bonding of thermoplastic elastomer film to PMMA for microfluidic applications. Surf. Coat. Technol. 320, 437–440 (2017)CrossRef Yu, S., Ng, S.P., Wang, Z., Tham, C.L., Soh, Y.C.: Thermal bonding of thermoplastic elastomer film to PMMA for microfluidic applications. Surf. Coat. Technol. 320, 437–440 (2017)CrossRef
5.
go back to reference Mohd Ghazali, F.A., Mah, C.K., AbuZaiter, A., Chee, P.S., Mohamed Ali, M.S.: Soft dielectric elastomer actuator micropump. Sensors Actuators A Phys. 263, 276–284 (2017)CrossRef Mohd Ghazali, F.A., Mah, C.K., AbuZaiter, A., Chee, P.S., Mohamed Ali, M.S.: Soft dielectric elastomer actuator micropump. Sensors Actuators A Phys. 263, 276–284 (2017)CrossRef
6.
go back to reference Branz, F., Francesconi, A.: Experimental evaluation of a Dielectric Elastomer robotic arm for space applications. Acta Astronaut. 133, 324–333 (2017)CrossRef Branz, F., Francesconi, A.: Experimental evaluation of a Dielectric Elastomer robotic arm for space applications. Acta Astronaut. 133, 324–333 (2017)CrossRef
7.
go back to reference Treloar, L.R.G.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40(0), 59–70 (1944)CrossRef Treloar, L.R.G.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40(0), 59–70 (1944)CrossRef
8.
go back to reference Rivlin, R.S., Thomas, A.G.: The effect of stress relaxation on the tearing of vulcanized rubber. Eng. Fract. Mech. 18(2), 389–401 (1983)CrossRef Rivlin, R.S., Thomas, A.G.: The effect of stress relaxation on the tearing of vulcanized rubber. Eng. Fract. Mech. 18(2), 389–401 (1983)CrossRef
9.
go back to reference Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids. 41(2), 389–412 (1993)CrossRef Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids. 41(2), 389–412 (1993)CrossRef
10.
go back to reference Attard, M.M., Hunt, G.W.: Hyperelastic constitutive modeling under finite strain. Int. J. Solids Struct. 41(18), 5327–5350 (2004)CrossRef Attard, M.M., Hunt, G.W.: Hyperelastic constitutive modeling under finite strain. Int. J. Solids Struct. 41(18), 5327–5350 (2004)CrossRef
11.
go back to reference Mills, N.J.: Handbook of polymeric foams and foam technology. Polymer. 34(10), 2237 (1993)CrossRef Mills, N.J.: Handbook of polymeric foams and foam technology. Polymer. 34(10), 2237 (1993)CrossRef
12.
go back to reference Dowling, N.E.: Mechanical Behavior of Materials. Pearson Prentice Hall, Upper Saddle River (2012) Dowling, N.E.: Mechanical Behavior of Materials. Pearson Prentice Hall, Upper Saddle River (2012)
13.
go back to reference Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)CrossRef Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)CrossRef
14.
go back to reference Allan, B.F.: Applied Mechanics of Solids. Taylor & Francis Group, Boca Raton (2012) Allan, B.F.: Applied Mechanics of Solids. Taylor & Francis Group, Boca Raton (2012)
15.
go back to reference Rivlin, R.S.: Chapter 10 – Large elastic deformations A2. In: Eirich, F.R. (ed.) Rheology, pp. 351–385. Academic, New York (1956) Rivlin, R.S.: Chapter 10 – Large elastic deformations A2. In: Eirich, F.R. (ed.) Rheology, pp. 351–385. Academic, New York (1956)
16.
go back to reference Ogden, R.W.: Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326, 565–584 (1972)CrossRef Ogden, R.W.: Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326, 565–584 (1972)CrossRef
17.
18.
go back to reference Ghoreishy, M.H.R.: Determination of the parameters of the Prony series in hyper-viscoelastic material models using the finite element method. Mater. Des. 35, 791–797 (2012)CrossRef Ghoreishy, M.H.R.: Determination of the parameters of the Prony series in hyper-viscoelastic material models using the finite element method. Mater. Des. 35, 791–797 (2012)CrossRef
19.
go back to reference Briody, C., Duignan, B., Jerrams, S., Ronan, S.: Prediction of compressive creep behaviour in flexible polyurethane foam over long time scales and at elevated temperatures. Polym. Test. 31(8), 1019–1025 (2012)CrossRef Briody, C., Duignan, B., Jerrams, S., Ronan, S.: Prediction of compressive creep behaviour in flexible polyurethane foam over long time scales and at elevated temperatures. Polym. Test. 31(8), 1019–1025 (2012)CrossRef
20.
go back to reference ABAQUS: Abaqus Benchmarks Manual 6.12. Simulia (2012) ABAQUS: Abaqus Benchmarks Manual 6.12. Simulia (2012)
Metadata
Title
Modified Hyper-Viscoelastic Constitutive Model for Elastomeric Materials
Authors
Karen Harban
Mark Tuttle
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-95053-2_1

Premium Partners