Skip to main content
Top
Published in: Acta Mechanica 4/2020

01-01-2020 | Original Paper

Modified LSM for size-dependent wave propagation: comparison with modified couple stress theory

Authors: Ning Liu, Li-Yun Fu, Gang Tang, Yue Kong, Xiao-Yi Xu

Published in: Acta Mechanica | Issue 4/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A modified LSM is proposed by introducing an independent micro-rotational inertia, which may help characterize the scale-dependent effect and avoid the Poisson’s ratio limitation of regular triangle lattices in two dimensions. For this method, some factors may affect data pickup and modeling accuracy, but the ‘optimal’ inputs, like stiffness ratio, numerical damping, and micro-rotational inertia, could be obtained from parameter identification by the Dakota toolkit (Adams et al., Tech Rep SAND2010–2183, 2009), when a suitable excitation source function and lattice spacing are set up. By comparing with the modified couple stress theory, we analyze the dispersion relationship of elastic waves for the estimation of the characteristic material length. It shows that this modified LSM may provide an alternative and promising way to investigate the size-dependent wave propagation in elastic media numerically.
Literature
1.
go back to reference Adams, B.M., Bohnhoff, W., Dalbey, K., Eddy, J., Eldred, M., Gay, D., Haskell, K., Hough, P.D., Swiler, L.P.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user’s manual. Sandia National Laboratories, Tech. Rep. SAND2010-2183 (2009) Adams, B.M., Bohnhoff, W., Dalbey, K., Eddy, J., Eldred, M., Gay, D., Haskell, K., Hough, P.D., Swiler, L.P.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user’s manual. Sandia National Laboratories, Tech. Rep. SAND2010-2183 (2009)
2.
go back to reference Akbarzadeh Khorshidi, M., Shariati, M.: An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory. Waves Random Complex Media 26(2), 243–258 (2016)MathSciNetMATHCrossRef Akbarzadeh Khorshidi, M., Shariati, M.: An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory. Waves Random Complex Media 26(2), 243–258 (2016)MathSciNetMATHCrossRef
3.
go back to reference Caldarelli, G., Castellano, C., Petri, A.: Criticality in models for fracture in disordered media. Physica A 270(1–2), 15–20 (1999)CrossRef Caldarelli, G., Castellano, C., Petri, A.: Criticality in models for fracture in disordered media. Physica A 270(1–2), 15–20 (1999)CrossRef
4.
go back to reference Chong, A., Yang, F., Lam, D., Tong, P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16(4), 1052–1058 (2001)CrossRef Chong, A., Yang, F., Lam, D., Tong, P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16(4), 1052–1058 (2001)CrossRef
5.
go back to reference Cosserat, E.: Theorie des corps deformables. Herman et fils Paris (1909) Cosserat, E.: Theorie des corps deformables. Herman et fils Paris (1909)
6.
go back to reference Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRef Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRef
7.
go back to reference Cusatis, G., Bažant, Z.P., Cedolin, L.: Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J. Eng. Mech. 129(12), 1439–1448 (2003)MATHCrossRef Cusatis, G., Bažant, Z.P., Cedolin, L.: Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J. Eng. Mech. 129(12), 1439–1448 (2003)MATHCrossRef
8.
go back to reference Damjanac, B., Detournay, C., Cundall, P.A.: Application of particle and lattice codes to simulation of hydraulic fracturing. Comput. Part. Mech. 3(2), 249–261 (2016)CrossRef Damjanac, B., Detournay, C., Cundall, P.A.: Application of particle and lattice codes to simulation of hydraulic fracturing. Comput. Part. Mech. 3(2), 249–261 (2016)CrossRef
9.
go back to reference Del Valle-García, R., Sánchez-Sesma, F.J.: Rayleigh waves modeling using an elastic lattice model. Geophys. Res. Lett. 30(16), SDE12. 1-SDE12. 4 (2003) Del Valle-García, R., Sánchez-Sesma, F.J.: Rayleigh waves modeling using an elastic lattice model. Geophys. Res. Lett. 30(16), SDE12. 1-SDE12. 4 (2003)
10.
go back to reference Eringen, A.C.: Mechanics of micromorphic continua. In: Mechanics of Generalized Continua, pp. 18–35. Springer (1968) Eringen, A.C.: Mechanics of micromorphic continua. In: Mechanics of Generalized Continua, pp. 18–35. Springer (1968)
11.
go back to reference Gao, X.L., Huang, J., Reddy, J.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224(11), 2699–2718 (2013)MathSciNetMATHCrossRef Gao, X.L., Huang, J., Reddy, J.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224(11), 2699–2718 (2013)MathSciNetMATHCrossRef
12.
go back to reference Gholamy, A., Kreinovich, V.: Why ricker wavelets are successful in processing seismic data: towards a theoretical explanation. In: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), pp. 11–16. IEEE (2014) Gholamy, A., Kreinovich, V.: Why ricker wavelets are successful in processing seismic data: towards a theoretical explanation. In: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), pp. 11–16. IEEE (2014)
13.
go back to reference Griffiths, D., Mustoe, G.G.: Modelling of elastic continua using a grillage of structural elements based on discrete element concepts. Int. J. Numer. Methods Eng. 50(7), 1759–1775 (2001)MATHCrossRef Griffiths, D., Mustoe, G.G.: Modelling of elastic continua using a grillage of structural elements based on discrete element concepts. Int. J. Numer. Methods Eng. 50(7), 1759–1775 (2001)MATHCrossRef
14.
go back to reference Grubmüller, H., Heller, H., Windemuth, A., Schulten, K.: Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 6(1–3), 121–142 (1991)CrossRef Grubmüller, H., Heller, H., Windemuth, A., Schulten, K.: Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 6(1–3), 121–142 (1991)CrossRef
15.
go back to reference Güven, U.: The investigation of the nonlocal longitudinal stress waves with modified couple stress theory. Acta Mech. 221(3–4), 321–325 (2011)MATHCrossRef Güven, U.: The investigation of the nonlocal longitudinal stress waves with modified couple stress theory. Acta Mech. 221(3–4), 321–325 (2011)MATHCrossRef
16.
go back to reference Güven, U.: A more general investigation for the longitudinal stress waves in microrods with initial stress. Acta Mech. 223(9), 2065–2074 (2012)MathSciNetMATHCrossRef Güven, U.: A more general investigation for the longitudinal stress waves in microrods with initial stress. Acta Mech. 223(9), 2065–2074 (2012)MathSciNetMATHCrossRef
17.
go back to reference Güven, U.: Two mode Mindlin-Herrmann rod solution based on modified couple stress theory. J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 94(12), 1011–1016 (2014)MathSciNetMATHCrossRef Güven, U.: Two mode Mindlin-Herrmann rod solution based on modified couple stress theory. J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 94(12), 1011–1016 (2014)MathSciNetMATHCrossRef
18.
go back to reference Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)CrossRef Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)CrossRef
19.
go back to reference Hahn, M., Bouriga, M., Kröplin, B.H., Wallmersperger, T.: Life time prediction of metallic materials with the discrete-element-method. Comput. Mater. Sci. 71, 146–156 (2013)CrossRef Hahn, M., Bouriga, M., Kröplin, B.H., Wallmersperger, T.: Life time prediction of metallic materials with the discrete-element-method. Comput. Mater. Sci. 71, 146–156 (2013)CrossRef
20.
go back to reference Hassold, G., Srolovitz, D.: Brittle fracture in materials with random defects. Phys. Rev. B 39(13), 9273 (1989)CrossRef Hassold, G., Srolovitz, D.: Brittle fracture in materials with random defects. Phys. Rev. B 39(13), 9273 (1989)CrossRef
21.
go back to reference Ikelle, L.T., Amundsen, L.: Introduction to Petroleum Seismology. Society of Exploration Geophysicists, Tulsa (2018)CrossRef Ikelle, L.T., Amundsen, L.: Introduction to Petroleum Seismology. Society of Exploration Geophysicists, Tulsa (2018)CrossRef
22.
go back to reference Jiang, C., Zhao, G.F.: Implementation of a coupled plastic damage distinct lattice spring model for dynamic crack propagation in geomaterials. Int. J. Numer. Anal. Meth. Geomech. 42(4), 674–693 (2018)CrossRef Jiang, C., Zhao, G.F.: Implementation of a coupled plastic damage distinct lattice spring model for dynamic crack propagation in geomaterials. Int. J. Numer. Anal. Meth. Geomech. 42(4), 674–693 (2018)CrossRef
23.
go back to reference Karihaloo, B.L., Shao, P., Xiao, Q.: Lattice modelling of the failure of particle composites. Eng. Fract. Mech. 70(17), 2385–2406 (2003)CrossRef Karihaloo, B.L., Shao, P., Xiao, Q.: Lattice modelling of the failure of particle composites. Eng. Fract. Mech. 70(17), 2385–2406 (2003)CrossRef
24.
go back to reference Kawai, T.: New discrete models and their application to seismic response analysis of structures. Nucl. Eng. Des. 48(1), 207–229 (1978)MathSciNetCrossRef Kawai, T.: New discrete models and their application to seismic response analysis of structures. Nucl. Eng. Des. 48(1), 207–229 (1978)MathSciNetCrossRef
25.
go back to reference Khorshidi, M.A., Shariati, M.: Propagation of stress wave in a functionally graded nano-bar based on modified couple stress theory. J. Mech. Eng. Technol. (JMET) 7(1), 43–56 (2015) Khorshidi, M.A., Shariati, M.: Propagation of stress wave in a functionally graded nano-bar based on modified couple stress theory. J. Mech. Eng. Technol. (JMET) 7(1), 43–56 (2015)
26.
go back to reference Koiter, W.: Couple-stress in the theory of elasticity. In: Proc. K. Ned. Akad. Wet, vol. 67, pp. 17–44. North Holland Pub (1964) Koiter, W.: Couple-stress in the theory of elasticity. In: Proc. K. Ned. Akad. Wet, vol. 67, pp. 17–44. North Holland Pub (1964)
27.
go back to reference Kumagai, H., Saito, T., O’Brien, G., Yamashina, T.: Characterization of scattered seismic wavefields simulated in heterogeneous media with topography. J. Geophys. Res. Solid Earth 116(B3), B03308 (2011)CrossRef Kumagai, H., Saito, T., O’Brien, G., Yamashina, T.: Characterization of scattered seismic wavefields simulated in heterogeneous media with topography. J. Geophys. Res. Solid Earth 116(B3), B03308 (2011)CrossRef
28.
go back to reference Li, G., Tang, G., Luo, G., Wang, H.: Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition. Mech. Syst. Signal Process. 120, 83–97 (2019)CrossRef Li, G., Tang, G., Luo, G., Wang, H.: Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition. Mech. Syst. Signal Process. 120, 83–97 (2019)CrossRef
29.
go back to reference Lilliu, G., van Mier, J.G.: 3D lattice type fracture model for concrete. Eng. Fract. Mech. 70(7–8), 927–941 (2003)CrossRef Lilliu, G., van Mier, J.G.: 3D lattice type fracture model for concrete. Eng. Fract. Mech. 70(7–8), 927–941 (2003)CrossRef
30.
go back to reference Liu, H., Zhang, Y., Kang, W., Zhang, P., Duan, H., He, X.: Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons. Phys. Rev. E 95(2), 023201 (2017)CrossRef Liu, H., Zhang, Y., Kang, W., Zhang, P., Duan, H., He, X.: Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons. Phys. Rev. E 95(2), 023201 (2017)CrossRef
31.
go back to reference Liu, J., Deng, S., Zhang, J., Liang, N.: Lattice type of fracture model for concrete. Theor. Appl. Fract. Mech. 48(3), 269–284 (2007)CrossRef Liu, J., Deng, S., Zhang, J., Liang, N.: Lattice type of fracture model for concrete. Theor. Appl. Fract. Mech. 48(3), 269–284 (2007)CrossRef
32.
go back to reference Liu, N., Li, M., Chen, W.: Mechanical deterioration of rock salt at different confinement levels: a grain-based lattice scheme assessment. Comput. Geotech. 84, 210–224 (2017)CrossRef Liu, N., Li, M., Chen, W.: Mechanical deterioration of rock salt at different confinement levels: a grain-based lattice scheme assessment. Comput. Geotech. 84, 210–224 (2017)CrossRef
33.
go back to reference Liu, N., Wang, Y.G., Li, M., Jia, J.: Nonlinear buckling analyses of a small-radius carbon nanotube. J. Appl. Phys. 115(15), 154301 (2014)CrossRef Liu, N., Wang, Y.G., Li, M., Jia, J.: Nonlinear buckling analyses of a small-radius carbon nanotube. J. Appl. Phys. 115(15), 154301 (2014)CrossRef
34.
go back to reference Ma, H., Gao, X.L., Reddy, J.: A microstructure-dependent timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)MathSciNetMATHCrossRef Ma, H., Gao, X.L., Reddy, J.: A microstructure-dependent timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)MathSciNetMATHCrossRef
35.
go back to reference Ma, H., Gao, X.L., Reddy, J.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220(1–4), 217–235 (2011)MATHCrossRef Ma, H., Gao, X.L., Reddy, J.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220(1–4), 217–235 (2011)MATHCrossRef
36.
go back to reference Matle, S.: Elastic wave propagation study in copper poly-grain sample using FEM. Theor. Appl. Mech. Lett. 7(1), 1–5 (2017)CrossRef Matle, S.: Elastic wave propagation study in copper poly-grain sample using FEM. Theor. Appl. Mech. Lett. 7(1), 1–5 (2017)CrossRef
37.
go back to reference Meriam, J.L., Kraige, L.G.: Engineering Mechanics: Dynamics, vol. 2. Wiley, Hoboken (2012)MATH Meriam, J.L., Kraige, L.G.: Engineering Mechanics: Dynamics, vol. 2. Wiley, Hoboken (2012)MATH
38.
39.
go back to reference Monette, L., Anderson, M.: Elastic and fracture properties of the two-dimensional triangular and square lattices. Modell. Simul. Mater. Sci. Eng. 2(1), 53 (1994)CrossRef Monette, L., Anderson, M.: Elastic and fracture properties of the two-dimensional triangular and square lattices. Modell. Simul. Mater. Sci. Eng. 2(1), 53 (1994)CrossRef
40.
go back to reference Mühlhaus, H., Oka, F.: Dispersion and wave propagation in discrete and continuous models for granular materials. Int. J. Solids Struct. 33(19), 2841–2858 (1996)MATHCrossRef Mühlhaus, H., Oka, F.: Dispersion and wave propagation in discrete and continuous models for granular materials. Int. J. Solids Struct. 33(19), 2841–2858 (1996)MATHCrossRef
41.
go back to reference Ostoja-Starzewski, M.: Lattice models in micromechanics. Appl. Mech. Rev. 55(1), 35–60 (2002)MATHCrossRef Ostoja-Starzewski, M.: Lattice models in micromechanics. Appl. Mech. Rev. 55(1), 35–60 (2002)MATHCrossRef
42.
go back to reference Ostoja-Starzewski, M., Sheng, P., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Mater. Sci. 7(1–2), 82–93 (1996)CrossRef Ostoja-Starzewski, M., Sheng, P., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Mater. Sci. 7(1–2), 82–93 (1996)CrossRef
43.
go back to reference Otter, J.R.H., Cassell, A.C., Hobbs, R.E.: POISSON: dynamic relaxation. Proc. Inst. Civ. Eng. 35(4), 633–656 (1966) Otter, J.R.H., Cassell, A.C., Hobbs, R.E.: POISSON: dynamic relaxation. Proc. Inst. Civ. Eng. 35(4), 633–656 (1966)
44.
go back to reference Park, S., Gao, X.: Bernoulli-euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355 (2006)CrossRef Park, S., Gao, X.: Bernoulli-euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355 (2006)CrossRef
45.
go back to reference Park, S., Gao, X.L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift für angewandte Mathematik und Physik 59(5), 904–917 (2008)MathSciNetMATHCrossRef Park, S., Gao, X.L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift für angewandte Mathematik und Physik 59(5), 904–917 (2008)MathSciNetMATHCrossRef
46.
go back to reference Reck, M.: Lattice spring methods for arbitrary meshes in two and three dimensions. Int. J. Numer. Methods Eng. 110(4), 333–349 (2017)MathSciNetMATHCrossRef Reck, M.: Lattice spring methods for arbitrary meshes in two and three dimensions. Int. J. Numer. Methods Eng. 110(4), 333–349 (2017)MathSciNetMATHCrossRef
47.
go back to reference Schlangen, E., Garboczi, E.: Fracture simulations of concrete using lattice models: computational aspects. Eng. Fract. Mech. 57(2–3), 319–332 (1997)CrossRef Schlangen, E., Garboczi, E.: Fracture simulations of concrete using lattice models: computational aspects. Eng. Fract. Mech. 57(2–3), 319–332 (1997)CrossRef
48.
go back to reference Suiker, A., Metrikine, A., De Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38(9), 1563–1583 (2001)MATHCrossRef Suiker, A., Metrikine, A., De Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38(9), 1563–1583 (2001)MATHCrossRef
49.
go back to reference Toomey, A., Bean, C.J.: Numerical simulation of seismic waves using a discrete particle scheme. Geophys. J. Int. 141(3), 595–604 (2000)CrossRef Toomey, A., Bean, C.J.: Numerical simulation of seismic waves using a discrete particle scheme. Geophys. J. Int. 141(3), 595–604 (2000)CrossRef
51.
go back to reference Voigt, W.: Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Ann. Phys. 274(12), 573–587 (1889)MATHCrossRef Voigt, W.: Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Ann. Phys. 274(12), 573–587 (1889)MATHCrossRef
52.
go back to reference Wang, Y.G., Lin, W.H., Liu, N.: Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory. Int. J. Mech. Sci. 71, 51–57 (2013)CrossRef Wang, Y.G., Lin, W.H., Liu, N.: Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory. Int. J. Mech. Sci. 71, 51–57 (2013)CrossRef
53.
go back to reference Wang, Y.G., Lin, W.H., Liu, N.: Nonlinear free vibration of a microscale beam based on modified couple stress theory. Physica E 47, 80–85 (2013)CrossRef Wang, Y.G., Lin, W.H., Liu, N.: Nonlinear free vibration of a microscale beam based on modified couple stress theory. Physica E 47, 80–85 (2013)CrossRef
54.
go back to reference Wang, Y.G., Lin, W.H., Liu, N.: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl. Math. Model. 39(1), 117–127 (2015)MathSciNetMATHCrossRef Wang, Y.G., Lin, W.H., Liu, N.: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl. Math. Model. 39(1), 117–127 (2015)MathSciNetMATHCrossRef
55.
go back to reference Xia, M., Zhou, H., Chen, H., Zhang, Q., Li, Q.: A rectangular-grid lattice spring model for modeling elastic waves in poisson’s solids. Geophysics 83(2), T69–T86 (2018)CrossRef Xia, M., Zhou, H., Chen, H., Zhang, Q., Li, Q.: A rectangular-grid lattice spring model for modeling elastic waves in poisson’s solids. Geophysics 83(2), T69–T86 (2018)CrossRef
56.
go back to reference Yang, C., Hou, X., Wang, L.: Thermal design, analysis and comparison on three concepts of space solar power satellite. Acta Astronaut. 137, 382–402 (2017)CrossRef Yang, C., Hou, X., Wang, L.: Thermal design, analysis and comparison on three concepts of space solar power satellite. Acta Astronaut. 137, 382–402 (2017)CrossRef
57.
go back to reference Yang, C., Liang, K., Zhang, X., Geng, X.: Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy. Mech. Syst. Signal Process. 124, 369–387 (2019)CrossRef Yang, C., Liang, K., Zhang, X., Geng, X.: Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy. Mech. Syst. Signal Process. 124, 369–387 (2019)CrossRef
58.
go back to reference Yang, C., Lu, Z., Yang, Z.: Robust optimal sensor placement for uncertain structures with interval parameters. IEEE Sens. J. 18(5), 2031–2041 (2018)CrossRef Yang, C., Lu, Z., Yang, Z.: Robust optimal sensor placement for uncertain structures with interval parameters. IEEE Sens. J. 18(5), 2031–2041 (2018)CrossRef
59.
go back to reference Yang, C., Zhang, X., Huang, X., Cheng, Z., Zhang, X., Hou, X.: Optimal sensor placement for deployable antenna module health monitoring in SSPS using genetic algorithm. Acta Astronaut. 140, 213–224 (2017)CrossRef Yang, C., Zhang, X., Huang, X., Cheng, Z., Zhang, X., Hou, X.: Optimal sensor placement for deployable antenna module health monitoring in SSPS using genetic algorithm. Acta Astronaut. 140, 213–224 (2017)CrossRef
60.
go back to reference Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)MATHCrossRef Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)MATHCrossRef
61.
go back to reference Yang, L., Lobkis, O., Rokhlin, S.: An integrated model for ultrasonic wave propagation and scattering in a polycrystalline medium with elongated hexagonal grains. Wave Motion 49(5), 544–560 (2012)MathSciNetMATHCrossRef Yang, L., Lobkis, O., Rokhlin, S.: An integrated model for ultrasonic wave propagation and scattering in a polycrystalline medium with elongated hexagonal grains. Wave Motion 49(5), 544–560 (2012)MathSciNetMATHCrossRef
62.
go back to reference Zhang, G., Gao, X.L.: A non-classical kirchhoff rod model based on the modified couple stress theory. Acta Mech. 230(1), 243–264 (2019)MathSciNetMATHCrossRef Zhang, G., Gao, X.L.: A non-classical kirchhoff rod model based on the modified couple stress theory. Acta Mech. 230(1), 243–264 (2019)MathSciNetMATHCrossRef
63.
go back to reference Zhang, P., Wei, P., Li, Y.: Wave propagation through a micropolar slab sandwiched by two elastic half-spaces. J. Vib. Acoust. 138(4), 041008 (2016)CrossRef Zhang, P., Wei, P., Li, Y.: Wave propagation through a micropolar slab sandwiched by two elastic half-spaces. J. Vib. Acoust. 138(4), 041008 (2016)CrossRef
64.
go back to reference Zhao, G.F., Fang, J., Sun, L., Zhao, J.: Parallelization of the distinct lattice spring model. Int. J. Numer. Anal. Methods Geomech. 37(1), 51–74 (2013)CrossRef Zhao, G.F., Fang, J., Sun, L., Zhao, J.: Parallelization of the distinct lattice spring model. Int. J. Numer. Anal. Methods Geomech. 37(1), 51–74 (2013)CrossRef
65.
go back to reference Zhao, G.F., Fang, J., Zhao, J.: A 3D distinct lattice spring model for elasticity and dynamic failure. Int. J. Numer. Anal. Methods Geomech. 35(8), 859–885 (2011)MATHCrossRef Zhao, G.F., Fang, J., Zhao, J.: A 3D distinct lattice spring model for elasticity and dynamic failure. Int. J. Numer. Anal. Methods Geomech. 35(8), 859–885 (2011)MATHCrossRef
66.
go back to reference Zubelewicz, A., Bažant, Z.P.: Interface element modeling of fracture in aggregate composites. J. Eng. Mech. 113(11), 1619–1630 (1987)CrossRef Zubelewicz, A., Bažant, Z.P.: Interface element modeling of fracture in aggregate composites. J. Eng. Mech. 113(11), 1619–1630 (1987)CrossRef
Metadata
Title
Modified LSM for size-dependent wave propagation: comparison with modified couple stress theory
Authors
Ning Liu
Li-Yun Fu
Gang Tang
Yue Kong
Xiao-Yi Xu
Publication date
01-01-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 4/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02580-y

Other articles of this Issue 4/2020

Acta Mechanica 4/2020 Go to the issue

Premium Partners