Skip to main content
Top
Published in:

30-06-2016

Modified photo-electrochemical and photo-voltaic properties of solvothermally crystallised TiO2 nanotube arrays

Authors: Manmadha Rao Banki, Mukta Tathavadekar, Venkatrao Chunchu, Somnath C. Roy

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

TiO2 nanotube arrays formed by electrochemical anodization of Ti metal foil are crystallized through a solvothermal technique at 200 °C (as compared to conventional annealing at 550 °C), which results in anatase phase with granular morphology. The photo-current measurements reveal a higher current-density under the visible light for solvothermally crystallized samples. The photo-current behavior has been analysed and correlated with defect state characterization using X-ray photo-electron spectroscopy, Photo-luminescence, Electron paramagnetic resonance and Mott-Schottky measurements. These studies indicate an oxygen vacancy related defect state at 1.14 eV below the conduction band. Also, the density of defect states in solvothermally crystallised samples is an order of magnitude higher than that in conventionally annealed samples. Furthermore, the photo-voltaic properties are studied through dye-sensitised solar cells. I–V characteristics of DSSC fabricated with solvothermally crystallised samples show comparable efficiency but higher dye-adsorption with respect to the conventionally annealed samples. Such a comparable efficiency at a lower thermal budget leads to reduced ‘energy pay-back time’ in solar cells fabricated with solvothermally crystallised TiO2 nanotube arrays. Finally, we demonstrate a proof-of-concept design of flexible solar cell based on TiO2 nanotubes grown on Kapton substrate and crystallised through the solvothermal technique.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.N.R. Rao, V. Govindaraj, Nanotubes and Nanowires, 2nd edn. (The Royal Society of Chemistry, London, 2011) C.N.R. Rao, V. Govindaraj, Nanotubes and Nanowires, 2nd edn. (The Royal Society of Chemistry, London, 2011)
2.
3.
go back to reference S. Rani, S.C. Roy, M. Paulose, O.K. Varghese, G.K. Mor, S. Kim, T.J. LaTempa, C.A. Grimes, Phys. Chem. Chem. Phys. 12, 2780 (2010)CrossRef S. Rani, S.C. Roy, M. Paulose, O.K. Varghese, G.K. Mor, S. Kim, T.J. LaTempa, C.A. Grimes, Phys. Chem. Chem. Phys. 12, 2780 (2010)CrossRef
5.
go back to reference D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331 (2001)CrossRef D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331 (2001)CrossRef
8.
9.
go back to reference S.M. Liu, L.M. Gan, L.H. Liu, W.D. Zhang, H.C. Zeng, Chem. Mater. 14, 1391 (2002)CrossRef S.M. Liu, L.M. Gan, L.H. Liu, W.D. Zhang, H.C. Zeng, Chem. Mater. 14, 1391 (2002)CrossRef
10.
go back to reference D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14, 3370 (2004)CrossRef D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14, 3370 (2004)CrossRef
11.
go back to reference K. Nakane, N. Ogata, Photocatalyst Nanofibers Obtained by Calcination of Organic-Inorganic Hybrids, in Nanofibers, ed. by A. Kumar (InTech, Rijeka, 2010) K. Nakane, N. Ogata, Photocatalyst Nanofibers Obtained by Calcination of Organic-Inorganic Hybrids, in Nanofibers, ed. by A. Kumar (InTech, Rijeka, 2010)
12.
go back to reference J. Ni, K. Noh, C.J. Frandsen, S.D. Kong, G. He, T. Tang, S. Jin, Mater. Sci. Eng. C 33, 259 (2013)CrossRef J. Ni, K. Noh, C.J. Frandsen, S.D. Kong, G. He, T. Tang, S. Jin, Mater. Sci. Eng. C 33, 259 (2013)CrossRef
14.
go back to reference H. Mirabolghasemi, N. Liu, K. Lee, P. Schmuki, Chem. Commun. 49, 2067 (2013)CrossRef H. Mirabolghasemi, N. Liu, K. Lee, P. Schmuki, Chem. Commun. 49, 2067 (2013)CrossRef
16.
go back to reference Y. Mao, S. Mao, Z.G. Ye, Z. Xie, L. Zhenga, Mater. Chem. Phys. 124, 1232 (2010)CrossRef Y. Mao, S. Mao, Z.G. Ye, Z. Xie, L. Zhenga, Mater. Chem. Phys. 124, 1232 (2010)CrossRef
17.
go back to reference R.P. Antony, T. Mathews, S. Dash, A.K. Tyagi, B. Raj, Mater. Chem. Phys. 132, 957 (2012)CrossRef R.P. Antony, T. Mathews, S. Dash, A.K. Tyagi, B. Raj, Mater. Chem. Phys. 132, 957 (2012)CrossRef
18.
go back to reference D. Chu, A. Younis, S.J. Li, Phys. D Appl. Phys. 45, 355 (2012) D. Chu, A. Younis, S.J. Li, Phys. D Appl. Phys. 45, 355 (2012)
19.
go back to reference L. Li, G. Li, J. Xu, J. Zheng, W. Tong, W. Hu, Phys. Chem. Chem. Phys. 12, 10857 (2010)CrossRef L. Li, G. Li, J. Xu, J. Zheng, W. Tong, W. Hu, Phys. Chem. Chem. Phys. 12, 10857 (2010)CrossRef
20.
go back to reference C. Mercado, Z. Seeley, A. Bandyopadhyay, S. Bose, J.L. McHale, ACS Appl. Mater. Interfaces 3, 2281 (2011)CrossRef C. Mercado, Z. Seeley, A. Bandyopadhyay, S. Bose, J.L. McHale, ACS Appl. Mater. Interfaces 3, 2281 (2011)CrossRef
21.
go back to reference B. Santara, P.K. Giri, K. Imatika, M. Fujii, J. Phys. Chem. C 117, 23402 (2013)CrossRef B. Santara, P.K. Giri, K. Imatika, M. Fujii, J. Phys. Chem. C 117, 23402 (2013)CrossRef
22.
go back to reference X.W. Wang, X.P. Gao, G.R. Li, L. Gao, T.Y. Yan, Appl. Phys. Lett. 91, 143101 (2007)CrossRef X.W. Wang, X.P. Gao, G.R. Li, L. Gao, T.Y. Yan, Appl. Phys. Lett. 91, 143101 (2007)CrossRef
23.
go back to reference R. Van de Krol, A. Goossens, J.J. Schoonman, Electrochem. Soc. 144, 1723 (1997)CrossRef R. Van de Krol, A. Goossens, J.J. Schoonman, Electrochem. Soc. 144, 1723 (1997)CrossRef
25.
26.
go back to reference G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6, 215 (2006)CrossRef G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6, 215 (2006)CrossRef
27.
go back to reference K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Nanotechnology 18, 065707 (2007)CrossRef K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Nanotechnology 18, 065707 (2007)CrossRef
28.
29.
go back to reference D. Kim, A. Ghicov, S.P. Albu, P. Schmuki, J. Am. Chem. Soc. 130, 16454 (2008)CrossRef D. Kim, A. Ghicov, S.P. Albu, P. Schmuki, J. Am. Chem. Soc. 130, 16454 (2008)CrossRef
30.
31.
32.
go back to reference D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Gratzel, ACS Nano 2, 1113 (2008)CrossRef D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Gratzel, ACS Nano 2, 1113 (2008)CrossRef
33.
go back to reference P. Chen, J. Brillet, H. Bala, P. Wang, S.M. Zakeeruddin, M. Gratzel, J. Mater. Chem. 19, 5325 (2009)CrossRef P. Chen, J. Brillet, H. Bala, P. Wang, S.M. Zakeeruddin, M. Gratzel, J. Mater. Chem. 19, 5325 (2009)CrossRef
34.
36.
37.
go back to reference X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal, S. Zhang, L.H. Wong, Nano Energy 11, 728 (2015)CrossRef X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal, S. Zhang, L.H. Wong, Nano Energy 11, 728 (2015)CrossRef
Metadata
Title
Modified photo-electrochemical and photo-voltaic properties of solvothermally crystallised TiO2 nanotube arrays
Authors
Manmadha Rao Banki
Mukta Tathavadekar
Venkatrao Chunchu
Somnath C. Roy
Publication date
30-06-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5248-0