Skip to main content
Top

2015 | OriginalPaper | Chapter

9. Molecular Genetic Techniques for Algal Bioengineering

Authors : Kenan Jijakli, Rasha Abdrabu, Basel Khraiwesh, David R. Nelson, Joseph Koussa, Kourosh Salehi-Ashtiani

Published in: Biomass and Biofuels from Microalgae

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The uniquely diverse metabolism of algae can make this group of organisms a prime target for biotechnological purposes and applications. To fully reap their biotechnological potential, molecular genetic techniques for manipulating algae must gain track and become more reliable. To this end, this chapter describes the currently available molecular genetic techniques and resources, as well as a number of relevant computational tools that can facilitate genetic manipulation of algae. Genetic transformation is perhaps the most elemental of such techniques and has become a well-established approach in algal-based genetic experiments. The utility of genetic transformations and other molecular genetic techniques is guided by phenotypic insights resulting from forward and reverse genetic analysis. As such, genetic transformations can form the building blocks for more complex genic manipulations. Herein, we describe currently available engineered homologous recombination or recombineering approaches, which allow for substitutions, insertions, and deletions of larger DNA segments, as well as manipulation of endogenous DNA. In addition, as reagent resources in the form of cloned open reading frames (ORFs) of transcription factors (TFs) and metabolic enzymes become more readily available, algal genetic manipulations can greatly increase the range of obtainable phenotypes for biotechnological applications. Such resources and a few case studies are highlighted in the context of candidate genes for algal bioengineering. On a final note, tools for computer-aided design (CAD) to prototype molecular genetic techniques and protocols are described. Such tools could greatly increase the reliability and efficiency of genetic molecular techniques for algal bioengineering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anila N, Chandrashekar A, Ravishankar GA, Sarada R (2011) Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. Eur J Phycol 46:36–44CrossRef Anila N, Chandrashekar A, Ravishankar GA, Sarada R (2011) Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. Eur J Phycol 46:36–44CrossRef
go back to reference Arif MA, Frank W, Khraiwesh B (2013) Role of RNA interference (RNAi) in the moss Physcomitrella patens. Int J Mol Sci 14:1516–1540CrossRef Arif MA, Frank W, Khraiwesh B (2013) Role of RNA interference (RNAi) in the moss Physcomitrella patens. Int J Mol Sci 14:1516–1540CrossRef
go back to reference Banta L, Montenegro M (2008) Agrobacterium and plant biotechnology. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 73–147CrossRef Banta L, Montenegro M (2008) Agrobacterium and plant biotechnology. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 73–147CrossRef
go back to reference Cadoret J-P, Garnier M, Saint-Jean B (2012) Microalgae, functional genomics and biotechnology. In: Gwenaël P (ed) Advances in botanical research. Academic Press, Waltham, pp 285–341 Cadoret J-P, Garnier M, Saint-Jean B (2012) Microalgae, functional genomics and biotechnology. In: Gwenaël P (ed) Advances in botanical research. Academic Press, Waltham, pp 285–341
go back to reference Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson BØ, Salehi-Ashtiani K, Papin JA (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518CrossRef Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson BØ, Salehi-Ashtiani K, Papin JA (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518CrossRef
go back to reference Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388CrossRef Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388CrossRef
go back to reference Datta S, Costantino N, Zhou X, Court DL (2008) Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc Natl Acad Sci 105:1626–1631CrossRef Datta S, Costantino N, Zhou X, Court DL (2008) Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc Natl Acad Sci 105:1626–1631CrossRef
go back to reference Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137:545–556CrossRef Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137:545–556CrossRef
go back to reference Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240CrossRef Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240CrossRef
go back to reference Ferry MS, Hasty J, Cookson NA (2011) Synthetic biology approaches to biofuel production. Biofuels 3:9–12CrossRef Ferry MS, Hasty J, Cookson NA (2011) Synthetic biology approaches to biofuel production. Biofuels 3:9–12CrossRef
go back to reference Finet C, Timme RE, Delwiche CF, Marlétaz F (2010) Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr Biol 20:2217–2222CrossRef Finet C, Timme RE, Delwiche CF, Marlétaz F (2010) Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr Biol 20:2217–2222CrossRef
go back to reference Garchery C, Gest N, Stevens R, Do PT, Fernie AR, Alhagdow M, Baldet P, Menard G, Rothan C, Massot C, Gautier H, Aarrouf J (2013) A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. Plant Cell Environ 36:159–175CrossRef Garchery C, Gest N, Stevens R, Do PT, Fernie AR, Alhagdow M, Baldet P, Menard G, Rothan C, Massot C, Gautier H, Aarrouf J (2013) A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. Plant Cell Environ 36:159–175CrossRef
go back to reference Ghamsari L, Balaji S, Shen Y, Yang X, Balcha D, Fan C, Hao T, Yu H, Papin JA, Salehi-Ashtiani K (2011) Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii. BMC Genom 12(Suppl 1):S4CrossRef Ghamsari L, Balaji S, Shen Y, Yang X, Balcha D, Fan C, Hao T, Yu H, Papin JA, Salehi-Ashtiani K (2011) Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii. BMC Genom 12(Suppl 1):S4CrossRef
go back to reference Gietz RD, Woods RA (2001) Genetic transformation of yeast. Biotechniques 30:816–831 Gietz RD, Woods RA (2001) Genetic transformation of yeast. Biotechniques 30:816–831
go back to reference Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol 17:489–495CrossRef Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol 17:489–495CrossRef
go back to reference Gonzalez-Ballester D, Pootakham W, Mus F, Yang W, Catalanotti C, Magneschi L, Prior M, Grossman AR, De Montaigu A, Higuera JJ, Galván A, Fernandez E (2011) Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7:24 Gonzalez-Ballester D, Pootakham W, Mus F, Yang W, Catalanotti C, Magneschi L, Prior M, Grossman AR, De Montaigu A, Higuera JJ, Galván A, Fernandez E (2011) Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7:24
go back to reference Gumpel NJ, Rochaix JD, Purton S (1994) Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet 26:438–442CrossRef Gumpel NJ, Rochaix JD, Purton S (1994) Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet 26:438–442CrossRef
go back to reference Guo S-L, Zhao X-Q, Tang Y, Wan C, Alam MA, Ho S-H, Bai F-W, Chang J-S (2013) Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J Biotechnol 163:61–68CrossRef Guo S-L, Zhao X-Q, Tang Y, Wan C, Alam MA, Ho S-H, Bai F-W, Chang J-S (2013) Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J Biotechnol 163:61–68CrossRef
go back to reference Hallmann A, Rappel A, Sumper M (1997) Gene replacement by homologous recombination in the multicellular green alga Volvox carteri. Nat Acad Sci USA 94:7469–7474CrossRef Hallmann A, Rappel A, Sumper M (1997) Gene replacement by homologous recombination in the multicellular green alga Volvox carteri. Nat Acad Sci USA 94:7469–7474CrossRef
go back to reference Hippler M, Redding K, Rochaix J-D (1998) Chlamydomonas genetics, a tool for the study of bioenergetic pathways. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1367:1–62CrossRef Hippler M, Redding K, Rochaix J-D (1998) Chlamydomonas genetics, a tool for the study of bioenergetic pathways. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1367:1–62CrossRef
go back to reference Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR (2009) Biomass productivities in wild type and pigment mutant of cyclotella sp. (Diatom). Appl Biochem Biotechnol 157:507–526CrossRef Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR (2009) Biomass productivities in wild type and pigment mutant of cyclotella sp. (Diatom). Appl Biochem Biotechnol 157:507–526CrossRef
go back to reference Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108:21265–21269CrossRef Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108:21265–21269CrossRef
go back to reference Kindle K (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci 87:1228–1232CrossRef Kindle K (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci 87:1228–1232CrossRef
go back to reference Kindle K (2004) Nuclear transformation: technology and applications. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Springer, Netherlands, pp 41–61CrossRef Kindle K (2004) Nuclear transformation: technology and applications. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Springer, Netherlands, pp 41–61CrossRef
go back to reference Koulintchenko MV, Dietrich A, Konstantinov YM (2012) Mitochondrial genetic transformation via biotechnological approaches or natural competence mechanism: do we have a choice? Biopolymers Cell 28:261–266CrossRef Koulintchenko MV, Dietrich A, Konstantinov YM (2012) Mitochondrial genetic transformation via biotechnological approaches or natural competence mechanism: do we have a choice? Biopolymers Cell 28:261–266CrossRef
go back to reference Kukuczka B, Magneschi L, Petroutsos D, Steinbeck J, Bald T, Powikrowska M, Fufezan C, Finazzi G, Hippler M (2014) Proton gradient regulation 5-like 1-mediated cyclic electron flow is crucial for acclimation to anoxia and complementary to nonphotochemical quenching in stress adaptation. Plant Physiol 165:1604–1617CrossRef Kukuczka B, Magneschi L, Petroutsos D, Steinbeck J, Bald T, Powikrowska M, Fufezan C, Finazzi G, Hippler M (2014) Proton gradient regulation 5-like 1-mediated cyclic electron flow is crucial for acclimation to anoxia and complementary to nonphotochemical quenching in stress adaptation. Plant Physiol 165:1604–1617CrossRef
go back to reference Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738CrossRef Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738CrossRef
go back to reference Larosa V, Remacle C (2013) Transformation of the mitochondrial genome. Int J Dev Biol 57:659–665CrossRef Larosa V, Remacle C (2013) Transformation of the mitochondrial genome. Int J Dev Biol 57:659–665CrossRef
go back to reference Lawson ND, Wolfe SA (2011) Forward and reverse genetic approaches for the analysis of vertebrate development in the Zebrafish. Dev Cell 21:48–64CrossRef Lawson ND, Wolfe SA (2011) Forward and reverse genetic approaches for the analysis of vertebrate development in the Zebrafish. Dev Cell 21:48–64CrossRef
go back to reference Lehr F, Morweiser M, Rosello Sastre R, Posten C, Kruse O (2012) Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics. J Biotechnol 162:89–96CrossRef Lehr F, Morweiser M, Rosello Sastre R, Posten C, Kruse O (2012) Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics. J Biotechnol 162:89–96CrossRef
go back to reference Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202CrossRef Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202CrossRef
go back to reference Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250CrossRef Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250CrossRef
go back to reference Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671CrossRef Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671CrossRef
go back to reference Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129CrossRef Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129CrossRef
go back to reference Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814CrossRef Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814CrossRef
go back to reference Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982CrossRef Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982CrossRef
go back to reference Neupert J, Karcher D, Bock R (2009) Generation of chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150CrossRef Neupert J, Karcher D, Bock R (2009) Generation of chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150CrossRef
go back to reference Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS ONE 8:1–12CrossRef Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS ONE 8:1–12CrossRef
go back to reference O’Neill BM, Mikkelson KL, Gutierrez NM, Cunningham JL, Wolff KL, Szyjka SJ, Yohn CB, Redding KE, Mendez MJ (2012) An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res 40:2782–2792CrossRef O’Neill BM, Mikkelson KL, Gutierrez NM, Cunningham JL, Wolff KL, Szyjka SJ, Yohn CB, Redding KE, Mendez MJ (2012) An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res 40:2782–2792CrossRef
go back to reference Perez-Martin M, Perez-Perez ME, Lemaire SD, Crespo JL (2014) Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas. Plant Physiol. doi:10.1104/pp.114.243659 Perez-Martin M, Perez-Perez ME, Lemaire SD, Crespo JL (2014) Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas. Plant Physiol. doi:10.​1104/​pp.​114.​243659
go back to reference Pinto TS, Malcata FX, Arrabaça JD, Silva JM, Spreitzer RJ, Esquível MG (2013) Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 97:5635–5643CrossRef Pinto TS, Malcata FX, Arrabaça JD, Silva JM, Spreitzer RJ, Esquível MG (2013) Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 97:5635–5643CrossRef
go back to reference Polle JEW, Kanakagiri S-D, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:49–59 Polle JEW, Kanakagiri S-D, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:49–59
go back to reference Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotechnol Adv 30:1602–1613CrossRef Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotechnol Adv 30:1602–1613CrossRef
go back to reference Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S (2013) Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 113:4611–4632CrossRef Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S (2013) Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 113:4611–4632CrossRef
go back to reference Remacle C, Matagne R (2004) Mitochondrial genetics. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Springer, Netherlands, pp 661–674CrossRef Remacle C, Matagne R (2004) Mitochondrial genetics. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Springer, Netherlands, pp 661–674CrossRef
go back to reference Rohr J, Sarkar N, Balenger S, BR Jeong, Cerutti H (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J 40:611–621CrossRef Rohr J, Sarkar N, Balenger S, BR Jeong, Cerutti H (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J 40:611–621CrossRef
go back to reference Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223CrossRef Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223CrossRef
go back to reference Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16CrossRef Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16CrossRef
go back to reference Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383CrossRef Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383CrossRef
go back to reference Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623CrossRef Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623CrossRef
go back to reference Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani K, Tabatabaei M (2014) Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Res J 1:91–97 Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani K, Tabatabaei M (2014) Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Res J 1:91–97
go back to reference Vuttipongchaikij S (2012) Genetic manipulation of microalgae for improvement of biodiesel production. Thai J Genet 5:130–148 Vuttipongchaikij S (2012) Genetic manipulation of microalgae for improvement of biodiesel production. Thai J Genet 5:130–148
go back to reference Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic ERA. J Phycol 41:1077–1093CrossRef Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic ERA. J Phycol 41:1077–1093CrossRef
go back to reference Wang H-H, Yin W-B, Hu Z-M (2009a) Advances in chloroplast engineering. J Genet Genomics 36:387–398CrossRef Wang H-H, Yin W-B, Hu Z-M (2009a) Advances in chloroplast engineering. J Genet Genomics 36:387–398CrossRef
go back to reference Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009b) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868CrossRef Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009b) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868CrossRef
go back to reference Winck FV, Páez Melo DO, González Barrios AF (2013) Carbon acquisition and accumulation in microalgae Chlamydomonas: insights from “omics” approaches. J Proteomics 94:207–218CrossRef Winck FV, Páez Melo DO, González Barrios AF (2013) Carbon acquisition and accumulation in microalgae Chlamydomonas: insights from “omics” approaches. J Proteomics 94:207–218CrossRef
go back to reference Zabawinski C, Van den Koornhuyse N, D’Hulst C, Schlichting R, Giersch C, Delrue B, Lacroix JM, Preiss J, Ball S (2001) Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J Bacteriol 183:1069–1077CrossRef Zabawinski C, Van den Koornhuyse N, D’Hulst C, Schlichting R, Giersch C, Delrue B, Lacroix JM, Preiss J, Ball S (2001) Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J Bacteriol 183:1069–1077CrossRef
go back to reference Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang X-J, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203CrossRef Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang X-J, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203CrossRef
Metadata
Title
Molecular Genetic Techniques for Algal Bioengineering
Authors
Kenan Jijakli
Rasha Abdrabu
Basel Khraiwesh
David R. Nelson
Joseph Koussa
Kourosh Salehi-Ashtiani
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-16640-7_9