Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2012

01-08-2012

Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass

Authors: M. Grujicic, W. C. Bell, B. Pandurangan, B. A. Cheeseman, C. Fountzoulas, P. Patel

Published in: Journal of Materials Engineering and Performance | Issue 8/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A non-equilibrium molecular dynamics method is employed to study the mechanical response of soda-lime glass (a material commonly used in transparent armor applications) when subjected to the loading conditions associated with the generation and propagation of planar shock waves. Specific attention is given to the identification and characterization of various (inelastic-deformation and energy-dissipation) molecular-level phenomena and processes taking place at, or in the vicinity of, the shock front. The results obtained revealed that the shock loading causes a 2-4% (shock strength-dependent) density increase. In addition, an increase in the average coordination number of the silicon atoms is observed along with the creation of smaller Si-O rings. These processes are associated with substantial energy absorption and dissipation and are believed to greatly influence the blast/ballistic impact mitigation potential of soda-lime glass. The present work was also aimed at the determination of the shock Hugoniot (i.e., a set of axial stress vs. density/specific-volume vs. internal energy vs. particle velocity vs. temperature) material states obtained in soda-lime glass after the passage of a shock wave of a given strength (as quantified by the shock speed). The availability of a shock Hugoniot is critical for construction of a high deformation-rate, large-strain, high pressure material model which can be used within a continuum-level computational analysis to capture the response of a soda-lime glass based laminated transparent armor structure (e.g., a military vehicle windshield, door window, etc.) to blast/ballistic impact loading.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Strassburger, P. Patel, W. McCauley, and D.W. Templeton, Visualization of Wave Propagation and Impact Damage in a Polycrystalline Transparent Ceramic-AlON, Proceedings of the 22nd International Symposium on Ballistics, November 2005, Vancouver, Canada E. Strassburger, P. Patel, W. McCauley, and D.W. Templeton, Visualization of Wave Propagation and Impact Damage in a Polycrystalline Transparent Ceramic-AlON, Proceedings of the 22nd International Symposium on Ballistics, November 2005, Vancouver, Canada
2.
go back to reference AMPTIAC Quarterly, Army Materials Research: Transforming Land Combat Through New Technologies, AMPTIAC Quart., 2004, 8(4), p 2–5 AMPTIAC Quarterly, Army Materials Research: Transforming Land Combat Through New Technologies, AMPTIAC Quart., 2004, 8(4), p 2–5
3.
go back to reference M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, P. Patel, and E. Strassburger, A Ballistic Material Model for Starphire®, A Soda-lime Transparent Armor Glass, Mater. Sci. Eng. A, 2008, 492(1), p 397–411 M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, P. Patel, and E. Strassburger, A Ballistic Material Model for Starphire®, A Soda-lime Transparent Armor Glass, Mater. Sci. Eng. A, 2008, 492(1), p 397–411
4.
go back to reference M. Grujicic, B. Pandurangan, W.C. Bell, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, An Improved Mechanical Material Model for Ballistic Soda-Lime Glass, J. Mater. Eng. Perform., 2009, 18(8), p 1012–1028CrossRef M. Grujicic, B. Pandurangan, W.C. Bell, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, An Improved Mechanical Material Model for Ballistic Soda-Lime Glass, J. Mater. Eng. Perform., 2009, 18(8), p 1012–1028CrossRef
5.
go back to reference M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, A Simple Ballistic Material Model for Soda-Lime Glass, Int. J. Impact Eng., 2009, 36, p 386–401CrossRef M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, C. Fountzoulas, and P. Patel, A Simple Ballistic Material Model for Soda-Lime Glass, Int. J. Impact Eng., 2009, 36, p 386–401CrossRef
6.
go back to reference M. Grujicic, W.C. Bell, P.S. Glomski, B. Pandurangan, B.A. Cheeseman, C. Fountzoulas, P. Patel, D.W. Templeton, and K.D. Bishnoi, Multi-length Scale Modeling of High-pressure Induced Phase Transformations in Soda-lime Glass, J. Mater. Eng. Perform., 2010, 20(7), p 1144–1156 M. Grujicic, W.C. Bell, P.S. Glomski, B. Pandurangan, B.A. Cheeseman, C. Fountzoulas, P. Patel, D.W. Templeton, and K.D. Bishnoi, Multi-length Scale Modeling of High-pressure Induced Phase Transformations in Soda-lime Glass, J. Mater. Eng. Perform., 2010, 20(7), p 1144–1156
7.
go back to reference L.V. Woodcock, C.A. Angell, and P. Cheeseman, Molecular Dynamics Studies of the Vitreous State: Simple Ionic Systems and Silica, J. Chem. Phys., 1976, 65, p 1565–1577CrossRef L.V. Woodcock, C.A. Angell, and P. Cheeseman, Molecular Dynamics Studies of the Vitreous State: Simple Ionic Systems and Silica, J. Chem. Phys., 1976, 65, p 1565–1577CrossRef
8.
go back to reference R.G.D. Valle and E. Venuti, High-Pressure Densification of Silica Glass: A Molecular-dynamics Simulation, Phys. Rev. B, 1996, 54(6), p 3809–3816CrossRef R.G.D. Valle and E. Venuti, High-Pressure Densification of Silica Glass: A Molecular-dynamics Simulation, Phys. Rev. B, 1996, 54(6), p 3809–3816CrossRef
9.
go back to reference K. Trachenko and M.T. Dove, Densification of Silica Glass Under Pressure, J. Phys.: Condens. Matter, 2002, 14, p 7449–7459CrossRef K. Trachenko and M.T. Dove, Densification of Silica Glass Under Pressure, J. Phys.: Condens. Matter, 2002, 14, p 7449–7459CrossRef
10.
go back to reference Y. Liang, C.R. Miranda, and S. Scandolo, Mechanical Strength and Coordinate Defects in Compressed Silica Glass: Molecular Dynamics Simulations, Phys. Rev. B, 2007, 75, p 024205CrossRef Y. Liang, C.R. Miranda, and S. Scandolo, Mechanical Strength and Coordinate Defects in Compressed Silica Glass: Molecular Dynamics Simulations, Phys. Rev. B, 2007, 75, p 024205CrossRef
11.
go back to reference B. Nghiem, PhD thesis, University of Paris 6, France 1998 B. Nghiem, PhD thesis, University of Paris 6, France 1998
12.
go back to reference C. Denoual and F. Hild, Dynamic Fragmentation of Brittle Solids: A Multi-scale Model, Eur. J. Mech. Solids A, 2002, 21, p 105–120CrossRef C. Denoual and F. Hild, Dynamic Fragmentation of Brittle Solids: A Multi-scale Model, Eur. J. Mech. Solids A, 2002, 21, p 105–120CrossRef
13.
go back to reference M. Yazdchi, S. Valliappan, and W. Zhang, A Continuum Model for Dynamic Damage Evolution of Anisotropic Brittle Materials, Int. J. Numer. Methods Eng., 1996, 39, p 1555–1583CrossRef M. Yazdchi, S. Valliappan, and W. Zhang, A Continuum Model for Dynamic Damage Evolution of Anisotropic Brittle Materials, Int. J. Numer. Methods Eng., 1996, 39, p 1555–1583CrossRef
14.
go back to reference F. Hild, C. Denoual, P. Forquin, and X. Brajer, On the Probabilistic and Deterministic Transition Involved in a Fragmentation Process of Brittle Materials, Comput. Struct., 2003, 81, p 1241–1253CrossRef F. Hild, C. Denoual, P. Forquin, and X. Brajer, On the Probabilistic and Deterministic Transition Involved in a Fragmentation Process of Brittle Materials, Comput. Struct., 2003, 81, p 1241–1253CrossRef
15.
go back to reference T.J. Holmquist, D.W. Templeton, and K.D. Bishnoi, Constitutive Modeling of Aluminum Nitride for Large Strain High-strain Rate, and High-pressure Applications, Int. J. Impact Eng., 2001, 25, p 211–231CrossRef T.J. Holmquist, D.W. Templeton, and K.D. Bishnoi, Constitutive Modeling of Aluminum Nitride for Large Strain High-strain Rate, and High-pressure Applications, Int. J. Impact Eng., 2001, 25, p 211–231CrossRef
16.
go back to reference G.T. Camacho and M. Ortiz, Computational Modeling of Impact Damage in Brittle Materials, Int. J. Solids Struct., 1996, 33, p 20–22, 2899–2938CrossRef G.T. Camacho and M. Ortiz, Computational Modeling of Impact Damage in Brittle Materials, Int. J. Solids Struct., 1996, 33, p 20–22, 2899–2938CrossRef
17.
go back to reference B.L. Holian and G.K. Straub, Molecular Dynamics of Shock Waves in Three-Dimensional Solids: Transition from Nonsteady to Steady Waves in Perfect Crystals and Implications for the Rankine-Hugoniot Conditions, Phys. Rev. Lett., 1979, 43, p 1598CrossRef B.L. Holian and G.K. Straub, Molecular Dynamics of Shock Waves in Three-Dimensional Solids: Transition from Nonsteady to Steady Waves in Perfect Crystals and Implications for the Rankine-Hugoniot Conditions, Phys. Rev. Lett., 1979, 43, p 1598CrossRef
18.
go back to reference G.K. Straub, S.K. Schiferl, and D.C. Wallace, Thermodynamic Properties of Fluid Sodium from Molecular Dynamics, Phys. Rev. B, 1983, 28, p 312–316CrossRef G.K. Straub, S.K. Schiferl, and D.C. Wallace, Thermodynamic Properties of Fluid Sodium from Molecular Dynamics, Phys. Rev. B, 1983, 28, p 312–316CrossRef
19.
go back to reference V. Y. Klimenko and A. N. Dremin, in Detonatsiya, Chernogolovka, O. N. Breusov et al., Eds., AkademiiNauk, Moscow, 1978, p 79 V. Y. Klimenko and A. N. Dremin, in Detonatsiya, Chernogolovka, O. N. Breusov et al., Eds., AkademiiNauk, Moscow, 1978, p 79
20.
go back to reference B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, Shock-Wave Structure Via Non-equilibrium Molecular Dynamics and Navier-Stokes Continuum Mechanics, Phys. Rev. A, 1980, 22, p 2498CrossRef B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, Shock-Wave Structure Via Non-equilibrium Molecular Dynamics and Navier-Stokes Continuum Mechanics, Phys. Rev. A, 1980, 22, p 2498CrossRef
21.
go back to reference W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley & Sons, New York, 1976, p 91–124 W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley & Sons, New York, 1976, p 91–124
22.
go back to reference H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, 1998, 102, p 7338–7364CrossRef H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, 1998, 102, p 7338–7364CrossRef
23.
go back to reference H. Sun, P. Ren, and J.R. Fried, The COMPASS force field: parameterization and validation for phosphazenes, Comput. Theoret. Polym. Sci., 1998, 8(1/2), p 229–246CrossRef H. Sun, P. Ren, and J.R. Fried, The COMPASS force field: parameterization and validation for phosphazenes, Comput. Theoret. Polym. Sci., 1998, 8(1/2), p 229–246CrossRef
26.
go back to reference M. Grujicic, Y.P. Sun, and K.L. Koudela, The Effect of Covalent Functionalization of Carbon Nanotube Reinforcements on the Atomic-level Mechanical Properties of Poly-Vinyl-Ester-Epoxy, Appl. Surf. Sci., 2007, 253, p 3009CrossRef M. Grujicic, Y.P. Sun, and K.L. Koudela, The Effect of Covalent Functionalization of Carbon Nanotube Reinforcements on the Atomic-level Mechanical Properties of Poly-Vinyl-Ester-Epoxy, Appl. Surf. Sci., 2007, 253, p 3009CrossRef
28.
go back to reference D.N. Theodorou and U.W. Suter, Atomistic Modeling of Mechanical Properties of Polymeric Glasses, Macromolecules, 1986, 19, p 139–154CrossRef D.N. Theodorou and U.W. Suter, Atomistic Modeling of Mechanical Properties of Polymeric Glasses, Macromolecules, 1986, 19, p 139–154CrossRef
29.
go back to reference A.V. Amirkhizi, J. Isaacs, J. McGee, and S. Namet-Nasser, An Experimentally-Based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects, Philos. Mag., 2006, 86(36), p 5847–5866CrossRef A.V. Amirkhizi, J. Isaacs, J. McGee, and S. Namet-Nasser, An Experimentally-Based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects, Philos. Mag., 2006, 86(36), p 5847–5866CrossRef
30.
go back to reference M. Grujicic, W.C. Bell, B. Pandurangan, and T. He, Blast-Wave Impact Mitigation of Polyurea When Used as a Helmet Suspension-Pad Material, Mater. Des., 2010, 31(9), p 4050–4065CrossRef M. Grujicic, W.C. Bell, B. Pandurangan, and T. He, Blast-Wave Impact Mitigation of Polyurea When Used as a Helmet Suspension-Pad Material, Mater. Des., 2010, 31(9), p 4050–4065CrossRef
31.
go back to reference M. Grujicic, W. C. Bell, B. Pandurangan and P. S. Glomski, Fluid/Structure Interaction Computational Investigation of the Blast-wave Mitigation Efficiency of the Advanced Combat Helmet, J. Mater. Eng. Perform., in press, 2010 M. Grujicic, W. C. Bell, B. Pandurangan and P. S. Glomski, Fluid/Structure Interaction Computational Investigation of the Blast-wave Mitigation Efficiency of the Advanced Combat Helmet, J. Mater. Eng. Perform., in press, 2010
32.
go back to reference C.S. Alexander, L.C. Chhabildas, W.D. Reinhart, and D.W. Templeton, Changes to the Shock Response of Fused Quartz Due to Glass Modification, Int. J. Impact Eng., 2008, 35, p 1376–1385CrossRef C.S. Alexander, L.C. Chhabildas, W.D. Reinhart, and D.W. Templeton, Changes to the Shock Response of Fused Quartz Due to Glass Modification, Int. J. Impact Eng., 2008, 35, p 1376–1385CrossRef
Metadata
Title
Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass
Authors
M. Grujicic
W. C. Bell
B. Pandurangan
B. A. Cheeseman
C. Fountzoulas
P. Patel
Publication date
01-08-2012
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2012
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-011-0064-4

Other articles of this Issue 8/2012

Journal of Materials Engineering and Performance 8/2012 Go to the issue

Premium Partners