Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Molecular Mechanics: Principles, History, and Current Status

Author : Valeri Poltev

Published in: Handbook of Computational Chemistry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A short survey of the general principles and selected applications of molecular mechanics (MM) is presented. The origin of molecular mechanics and its evolution is followed starting from “pre-computer” and the first computer-aided estimations of the structure and potential energy of simple molecular systems to the modern force fields and software for the computations of large biomolecules and their complexes. Analysis of the current state of physicochemical study of biological processes suggests that MM simulations based on empirical force fields have an ever-increasing impact on understanding the structure and functions of biomolecules. The problem of “classic mechanics” description of essentially quantum properties and processes is considered. Various approaches to a selection of force field mathematical expressions and parameters are reviewed. The relation between MM simplicity and “physical nature” of the properties and events is examined. Quantum chemistry contributions to MM description of complex molecular systems and MM contribution to quantum mechanics computations of such systems are considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allinger, N. L. (1959). Conformational analysis. III. Applications to some medium ring compounds. Journal of the American Chemical Society, 81, 5727. Allinger, N. L. (1959). Conformational analysis. III. Applications to some medium ring compounds. Journal of the American Chemical Society, 81, 5727.
go back to reference Allinger, N. L. (2010). Molecular structure: Understanding steric and electronic effects from molecular mechanics. Hoboken: Willey. Allinger, N. L. (2010). Molecular structure: Understanding steric and electronic effects from molecular mechanics. Hoboken: Willey.
go back to reference Allinger, N. L. (2011). Understanding molecular structure from molecular mechanics. Journal of Computer-Aided Molecular Design, 25, 295. Allinger, N. L. (2011). Understanding molecular structure from molecular mechanics. Journal of Computer-Aided Molecular Design, 25, 295.
go back to reference Allinger, N. L., & Sprague, J. T. (1973). Calculation of the structures of hydrocarbons containing delocalized electronic systems by the molecular mechanics method. Journal of the American Chemical Society, 95, 3893. Allinger, N. L., & Sprague, J. T. (1973). Calculation of the structures of hydrocarbons containing delocalized electronic systems by the molecular mechanics method. Journal of the American Chemical Society, 95, 3893.
go back to reference Allinger, N. L., Tribble, M. T., Miller, M. A., & Wertz, D. W. (1971). Conformational analysis. LXIX. Improved force field for the calculation of the structures and energies of hydrocarbons. Journal of the American Chemical Society, 93, 1637. Allinger, N. L., Tribble, M. T., Miller, M. A., & Wertz, D. W. (1971). Conformational analysis. LXIX. Improved force field for the calculation of the structures and energies of hydrocarbons. Journal of the American Chemical Society, 93, 1637.
go back to reference Allinger, N. L., Yuh, Y. H., & Lii, J. H. (1989). Molecular mechanics. The MM3 force field for hydrocarbons. Journal of the American Chemical Society, 111, 8551. Allinger, N. L., Yuh, Y. H., & Lii, J. H. (1989). Molecular mechanics. The MM3 force field for hydrocarbons. Journal of the American Chemical Society, 111, 8551.
go back to reference Allinger, N. L., Chen, K., & Lii, J. H. (1996). An improved force field (MM4) for saturated hydrocarbons. Journal of Computational Chemistry, 17, 642. Allinger, N. L., Chen, K., & Lii, J. H. (1996). An improved force field (MM4) for saturated hydrocarbons. Journal of Computational Chemistry, 17, 642.
go back to reference Antony, J., & Grimme, S. (2006). Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Physical Chemistry Chemical Physics, 8, 5287. Antony, J., & Grimme, S. (2006). Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Physical Chemistry Chemical Physics, 8, 5287.
go back to reference Arnautova, Y. A., & Scheraga, H. A. (2008). Use of decoys to optimize an all-atom force field including hydration. Biophysical Journal, 95, 2434. Arnautova, Y. A., & Scheraga, H. A. (2008). Use of decoys to optimize an all-atom force field including hydration. Biophysical Journal, 95, 2434.
go back to reference Arnautova, Y. A., Jagielska, A., & Scheraga, H. A. (2006). A new force field (ECEPP-05) for peptides, proteins and organic molecules. The Journal of Chemical Physics, 110, 5025. Arnautova, Y. A., Jagielska, A., & Scheraga, H. A. (2006). A new force field (ECEPP-05) for peptides, proteins and organic molecules. The Journal of Chemical Physics, 110, 5025.
go back to reference Baker, C. M., Anisimov, V. M., & MacKerell, A. D., Jr. (2011). Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. The Journal of Physical Chemistry B, 115, 580. Baker, C. M., Anisimov, V. M., & MacKerell, A. D., Jr. (2011). Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. The Journal of Physical Chemistry B, 115, 580.
go back to reference Bartell, L. S. (1960). On the effects of intramolecular van der Waals forces. The Journal of Chemical Physics, 32, 827. Bartell, L. S. (1960). On the effects of intramolecular van der Waals forces. The Journal of Chemical Physics, 32, 827.
go back to reference Barton, D. H. R. (1948). Interaction between non-bonded atoms, and the structure of cis-decalin. Journal of the Chemical Society, 340. Barton, D. H. R. (1948). Interaction between non-bonded atoms, and the structure of cis-decalin. Journal of the Chemical Society, 340.
go back to reference Barton, D. H. R. (1950). The conformation of the steroid nucleus. Experientia, 6, 316. Barton, D. H. R. (1950). The conformation of the steroid nucleus. Experientia, 6, 316.
go back to reference Berendsen, H. J. C., Postma, J. P. M., von Gunstaren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: Reidel. Berendsen, H. J. C., Postma, J. P. M., von Gunstaren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: Reidel.
go back to reference Berman, H. M., Olson, W. K., Beveridge, D. l., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S.-H., Srinivasan, A. R., & Schneider, B. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophysical Journal, 63, 751. Berman, H. M., Olson, W. K., Beveridge, D. l., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S.-H., Srinivasan, A. R., & Schneider, B. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophysical Journal, 63, 751.
go back to reference Berman, H. M., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein data bank. Nature Structural & Molecular Biology, 10, 980. Berman, H. M., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein data bank. Nature Structural & Molecular Biology, 10, 980.
go back to reference Bernal, J. D., & Fowler, R. H. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. The Journal of Chemical Physics, 1, 515. Bernal, J. D., & Fowler, R. H. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. The Journal of Chemical Physics, 1, 515.
go back to reference Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D., Jr. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. Journal of Chemical Theory and Computation, 8, 3257. Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D., Jr. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. Journal of Chemical Theory and Computation, 8, 3257.
go back to reference Bordner, A. J., Cavasotto, C. N., & Abagyan, R. A. (2003). Direct derivation of van der Waals force field parameters from quantum mechanical interaction energies. The Journal of Physical Chemistry B, 107, 9601. Bordner, A. J., Cavasotto, C. N., & Abagyan, R. A. (2003). Direct derivation of van der Waals force field parameters from quantum mechanical interaction energies. The Journal of Physical Chemistry B, 107, 9601.
go back to reference Bradley, D. F., Lifson, S., & Honig, B. (1964). Theory of optical and other properties of biopolymers: Applicability and elimination of the first-neighbor and dipole-dipole approximations. In B. Pullman (Ed.), Electronic aspects of biochemistry. New York: Academic. Bradley, D. F., Lifson, S., & Honig, B. (1964). Theory of optical and other properties of biopolymers: Applicability and elimination of the first-neighbor and dipole-dipole approximations. In B. Pullman (Ed.), Electronic aspects of biochemistry. New York: Academic.
go back to reference Brandenburg, J. G., & Grimme, S. (2014). Accurate modeling of organic molecular crystals by dispersion-corrected density functional tight binding (DFTB). The Journal of Physical Chemistry Letters, 5, 1785. Brandenburg, J. G., & Grimme, S. (2014). Accurate modeling of organic molecular crystals by dispersion-corrected density functional tight binding (DFTB). The Journal of Physical Chemistry Letters, 5, 1785.
go back to reference Brant, D. A., & Flory, P. J. (1965). The configuration of random polypeptide chains. II. Theory. Journal of the American Chemical Society, 87, 2791. Brant, D. A., & Flory, P. J. (1965). The configuration of random polypeptide chains. II. Theory. Journal of the American Chemical Society, 87, 2791.
go back to reference Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4, 187. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4, 187.
go back to reference Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computation Chemistry, 26, 1668. Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computation Chemistry, 26, 1668.
go back to reference Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D. R., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., & Kollman, P. A. (2010). AMBER 11. San Francisco: University of California. Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D. R., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., & Kollman, P. A. (2010). AMBER 11. San Francisco: University of California.
go back to reference Case, D. A., Berryman, J. T., Betz, R. M., Cerutti, D. S., Cheatham, T. E., III, Darden, T., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Luchko, T., Luo, R., Madej, B., Merz, K. M., Monard, G., Needham, P., Nguyen, H., Nguyen, H. T., Omelyan, I., Onufriev, A., Roe, D. R., Roitberg, A., Salomon-Ferrer, R., Simmerling, C. L., Smith, W., Swails, J., Walker, R. C., Wang, J., Wolf, R. M., Wu, X., York, D. M., & Kollman, P. A. (2015). AMBER 2015. San Francisco: University of California. Case, D. A., Berryman, J. T., Betz, R. M., Cerutti, D. S., Cheatham, T. E., III, Darden, T., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Luchko, T., Luo, R., Madej, B., Merz, K. M., Monard, G., Needham, P., Nguyen, H., Nguyen, H. T., Omelyan, I., Onufriev, A., Roe, D. R., Roitberg, A., Salomon-Ferrer, R., Simmerling, C. L., Smith, W., Swails, J., Walker, R. C., Wang, J., Wolf, R. M., Wu, X., York, D. M., & Kollman, P. A. (2015). AMBER 2015. San Francisco: University of California.
go back to reference Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Krautler, V., Oostenbrink, C., Peter, C., Trzesniak, D., & Van Gunsteren, W. F. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26, 1719. Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Krautler, V., Oostenbrink, C., Peter, C., Trzesniak, D., & Van Gunsteren, W. F. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26, 1719.
go back to reference Chuprina, V. P., & Poltev, V. I. (1983). Possible conformations of double-helical polynucleotides containing incorrect base-pairs. Nucleic Acids Research, 11, 5205. Chuprina, V. P., & Poltev, V. I. (1983). Possible conformations of double-helical polynucleotides containing incorrect base-pairs. Nucleic Acids Research, 11, 5205.
go back to reference Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I., Merz, K., Jr., Ferguson, D., Spellmeyer, D., Fox, T., Caldwell, J., & Kollman, P. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I., Merz, K., Jr., Ferguson, D., Spellmeyer, D., Fox, T., Caldwell, J., & Kollman, P. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179.
go back to reference Craig, D. P., Mason, R., Pauling, P., & Santry, D. P. (1965). Molecular packing in crystals of the aromatic hydrocarbons. Proceedings of the Royal Society A, 286, 98. Craig, D. P., Mason, R., Pauling, P., & Santry, D. P. (1965). Molecular packing in crystals of the aromatic hydrocarbons. Proceedings of the Royal Society A, 286, 98.
go back to reference Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models. Chichester: Wiley. Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models. Chichester: Wiley.
go back to reference De Santis, P. (1992). Conformational energy calculations of macromolecules. Current Contents, 34, 8. De Santis, P. (1992). Conformational energy calculations of macromolecules. Current Contents, 34, 8.
go back to reference De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1963). Stability of helical conformations of simple linear polymers. Journal of Polymer Science: Part A, 1, 1383. De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1963). Stability of helical conformations of simple linear polymers. Journal of Polymer Science: Part A, 1, 1383.
go back to reference De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1965). Interaction and stability of helical polypeptide chains. Nature, 206, 456. De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1965). Interaction and stability of helical polypeptide chains. Nature, 206, 456.
go back to reference De Voe, H., & Tinoco, I., Jr. (1962). The stability of helical polynucleotides: Base contributions. Journal of Molecular Biology, 4, 500. De Voe, H., & Tinoco, I., Jr. (1962). The stability of helical polynucleotides: Base contributions. Journal of Molecular Biology, 4, 500.
go back to reference Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999. Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999.
go back to reference Eisenberg, D. (2003). The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proceedings of the National Academy of Sciences of the United States of America, 100, 11207. Eisenberg, D. (2003). The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proceedings of the National Academy of Sciences of the United States of America, 100, 11207.
go back to reference Engler, E. M., Andose, J. D., & Schleyer, P. R. (1973). Critical evaluation of molecular mechanics. Journal of the American Chemical Society, 95, 8005. Engler, E. M., Andose, J. D., & Schleyer, P. R. (1973). Critical evaluation of molecular mechanics. Journal of the American Chemical Society, 95, 8005.
go back to reference Foloppe, N., & MacKerell, A. D., Jr. (2000). All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21, 86. Foloppe, N., & MacKerell, A. D., Jr. (2000). All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21, 86.
go back to reference Gibson, K. D., & Scheraga, H. A. (1967a). Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proceedings of the National Academy of Sciences of the United States of America, 58, 420. Gibson, K. D., & Scheraga, H. A. (1967a). Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proceedings of the National Academy of Sciences of the United States of America, 58, 420.
go back to reference Gibson, K. D., & Scheraga, H. A. (1967b). Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 58, 1317. Gibson, K. D., & Scheraga, H. A. (1967b). Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 58, 1317.
go back to reference Golas, E., Maisuradze, G. G., Senet, P., Oldziej, S., Czaplewski, C., Scheraga, H. A., & Liwo, A. (2012). Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. Journal of Chemical Theory and Computation, 8, 1750. Golas, E., Maisuradze, G. G., Senet, P., Oldziej, S., Czaplewski, C., Scheraga, H. A., & Liwo, A. (2012). Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. Journal of Chemical Theory and Computation, 8, 1750.
go back to reference Gresh, N., Claverie, P., & Pullman, A. (1986). Intermolecular interactions: Elaboration on an additive procedure including an explicit charge-transfer contribution. International Journal of Quantum Chemistry, 29, 101. Gresh, N., Claverie, P., & Pullman, A. (1986). Intermolecular interactions: Elaboration on an additive procedure including an explicit charge-transfer contribution. International Journal of Quantum Chemistry, 29, 101.
go back to reference Grimme, S. (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25, 1463. Grimme, S. (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25, 1463.
go back to reference Grimme, S. (2011). Density functional theory with London dispersion corrections. WIREs Computational Molecular Science, 1, 211. Grimme, S. (2011). Density functional theory with London dispersion corrections. WIREs Computational Molecular Science, 1, 211.
go back to reference Grubišić, S., Brancato, G., & Barone, V. (2013). An improved AMBER force field for α, α-dialkylated peptides: Intrinsic and solvent-induced conformational preferences of model systems. Physical Chemistry Chemical Physics, 15, 17395. Grubišić, S., Brancato, G., & Barone, V. (2013). An improved AMBER force field for α, α-dialkylated peptides: Intrinsic and solvent-induced conformational preferences of model systems. Physical Chemistry Chemical Physics, 15, 17395.
go back to reference Guo, X., Wang, Z., Zuo, L., Zhou, Z., Guo, X., & Sun, T. (2014). Quantitative prediction of enantioseparation using b-cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Analyst, 139, 6511. Guo, X., Wang, Z., Zuo, L., Zhou, Z., Guo, X., & Sun, T. (2014). Quantitative prediction of enantioseparation using b-cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Analyst, 139, 6511.
go back to reference Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17, 490. Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17, 490.
go back to reference Halgren, T. A. (1999a). MMFF VI. MMFF94s option for energy minimization studies. Journal of Computational Chemistry, 20, 720. Halgren, T. A. (1999a). MMFF VI. MMFF94s option for energy minimization studies. Journal of Computational Chemistry, 20, 720.
go back to reference Halgren, T. A. (1999b). MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. Journal of Computational Chemistry, 20, 730. Halgren, T. A. (1999b). MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. Journal of Computational Chemistry, 20, 730.
go back to reference Hart, K., Foloppe, N., Baker, C. M., Denning, E. J., Nilsson, L., & MacKerell, A. D., Jr. (2012). Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. Journal of Chemical Theory and Computation, 8, 348. Hart, K., Foloppe, N., Baker, C. M., Denning, E. J., Nilsson, L., & MacKerell, A. D., Jr. (2012). Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. Journal of Chemical Theory and Computation, 8, 348.
go back to reference He, Y., Maciejczyk, M., Oldziej, S., Scheraga, H. A., & Liwo, A. (2013). Mean-field interactions between nucleic-acid-base dipoles can drive the formation of the double helix. Physical Review Letters, 110, 098101. He, Y., Maciejczyk, M., Oldziej, S., Scheraga, H. A., & Liwo, A. (2013). Mean-field interactions between nucleic-acid-base dipoles can drive the formation of the double helix. Physical Review Letters, 110, 098101.
go back to reference Hendrickson, J. B. (1961). Molecular geometry. I. Machine computation of the common rings. Journal of the American Chemical Society, 83, 4537. Hendrickson, J. B. (1961). Molecular geometry. I. Machine computation of the common rings. Journal of the American Chemical Society, 83, 4537.
go back to reference Hendrickson, J. B. (1962). Molecular geometry. II. Methyl-cyclohexanes and cycloheptanes. Journal of the American Chemical Society, 84, 3355. Hendrickson, J. B. (1962). Molecular geometry. II. Methyl-cyclohexanes and cycloheptanes. Journal of the American Chemical Society, 84, 3355.
go back to reference Hendrickson, J. B. (1973). Molecular geometry. VIII. Proton magnetic resonance studies of cycloheptane conformations. Journal of the American Chemical Society, 95, 494. Hendrickson, J. B. (1973). Molecular geometry. VIII. Proton magnetic resonance studies of cycloheptane conformations. Journal of the American Chemical Society, 95, 494.
go back to reference Hill, T. L. (1946). On steric effects. The Journal of Chemical Physics, 14, 465. Hill, T. L. (1946). On steric effects. The Journal of Chemical Physics, 14, 465.
go back to reference Hill, T. L. (1948). Steric effects. I. Van der Waals potential energy curves. The Journal of Chemical Physics, 16, 399. Hill, T. L. (1948). Steric effects. I. Van der Waals potential energy curves. The Journal of Chemical Physics, 16, 399.
go back to reference Huang, J., & MacKerell, A. D., Jr. (2014). Induction of peptide bond dipoles drives cooperative helix formation in the (AAQAA)3 peptide. Biophysical Journal, 107, 991. Huang, J., & MacKerell, A. D., Jr. (2014). Induction of peptide bond dipoles drives cooperative helix formation in the (AAQAA)3 peptide. Biophysical Journal, 107, 991.
go back to reference Huang, J., Lopes, P. E. M., Roux, B., & MacKerell, A. D., Jr. (2014). Recent advances in polarizable force fields for macromolecules: Microsecond simulations of proteins using the classical Drude oscillator model. The Journal of Physical Chemistry Letters, 5, 3144. Huang, J., Lopes, P. E. M., Roux, B., & MacKerell, A. D., Jr. (2014). Recent advances in polarizable force fields for macromolecules: Microsecond simulations of proteins using the classical Drude oscillator model. The Journal of Physical Chemistry Letters, 5, 3144.
go back to reference Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110, 1657. Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110, 1657.
go back to reference Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926.
go back to reference Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11225. Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11225.
go back to reference Jurecka, P., Cerny, J., Hobza, P., & Salahub, D. R. (2007). Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of noncovalent complexes compared with ab initio quantum mechanics calculations 80. Journal of Computational Chemistry, 28, 555. Jurecka, P., Cerny, J., Hobza, P., & Salahub, D. R. (2007). Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of noncovalent complexes compared with ab initio quantum mechanics calculations 80. Journal of Computational Chemistry, 28, 555.
go back to reference Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105, 6474. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105, 6474.
go back to reference Khutorsky, V. E., & Poltev, V. I. (1976). Conformations of double-helical nucleic acids. Nature, 264, 483. Khutorsky, V. E., & Poltev, V. I. (1976). Conformations of double-helical nucleic acids. Nature, 264, 483.
go back to reference Kitaigorodski, A. I. (1959). Organic chemical crystallography. New York: Consultants Bureau. Kitaigorodski, A. I. (1959). Organic chemical crystallography. New York: Consultants Bureau.
go back to reference Kitaigorodsky, A. I. (1973). Molecular crystals and molecules. New York: Academic. Kitaigorodsky, A. I. (1973). Molecular crystals and molecules. New York: Academic.
go back to reference Kitaygorodsky, A. I. (1960). Calculation of conformations of organic molecules. Tetrahedron, 9, 183. Kitaygorodsky, A. I. (1960). Calculation of conformations of organic molecules. Tetrahedron, 9, 183.
go back to reference Kitaygorodsky, A. I. (1961). The interaction curve of non-bonded carbon and hydrogen atoms and its application. Tetrahedron, 14, 230. Kitaygorodsky, A. I. (1961). The interaction curve of non-bonded carbon and hydrogen atoms and its application. Tetrahedron, 14, 230.
go back to reference Klauda, J. B., Venable, R. M., MacKerell, A. D., Jr., & Pastor, R. W. (2008). Considerations for lipid force field development. Current Topics in Membranes, 60, 1. Klauda, J. B., Venable, R. M., MacKerell, A. D., Jr., & Pastor, R. W. (2008). Considerations for lipid force field development. Current Topics in Membranes, 60, 1.
go back to reference Lam, A. R., Rodriguez, J. J., Rojas, A., Scheraga, H. A., & Mukamel, S. (2013). Tracking the mechanism of fibril assembly by simulated two-dimensional ultraviolet spectroscopy. The Journal of Physical Chemistry A, 117, 342. Lam, A. R., Rodriguez, J. J., Rojas, A., Scheraga, H. A., & Mukamel, S. (2013). Tracking the mechanism of fibril assembly by simulated two-dimensional ultraviolet spectroscopy. The Journal of Physical Chemistry A, 117, 342.
go back to reference Langlet, J., Claverie, P., Caron, F., & Boeuve, J. C. (1981). Interactions between nucleic acid bases in hydrogen bonded and stacked configurations: The role of the molecular charge distribution. International Journal of Quantum Chemistry, 20, 299. Langlet, J., Claverie, P., Caron, F., & Boeuve, J. C. (1981). Interactions between nucleic acid bases in hydrogen bonded and stacked configurations: The role of the molecular charge distribution. International Journal of Quantum Chemistry, 20, 299.
go back to reference Laury, M. L., Wang, L.-P., Pande, V. S., Head-Gordon, T. L., & Ponder, J. W. (2015). Revised parameters for the AMOEBA polarizable atomic multipole water model. Journal of Physical Chemistry B. doi:10.1021/jp510896n. Laury, M. L., Wang, L.-P., Pande, V. S., Head-Gordon, T. L., & Ponder, J. W. (2015). Revised parameters for the AMOEBA polarizable atomic multipole water model. Journal of Physical Chemistry B. doi:10.1021/jp510896n.
go back to reference Leach, A. R. (2001). Molecular modelling: Principles and applications. Harlow: Prentice Hall (Pearson Education). Leach, A. R. (2001). Molecular modelling: Principles and applications. Harlow: Prentice Hall (Pearson Education).
go back to reference Leach, S. J., Némethy, G., & Scheraga, H. A. (1966a). Computation of the sterically allowed conformations of peptides. Biopolymers, 4, 369. Leach, S. J., Némethy, G., & Scheraga, H. A. (1966a). Computation of the sterically allowed conformations of peptides. Biopolymers, 4, 369.
go back to reference Leach, S. J., Némethy, G., & Scheraga, H. A. (1966b). Intramolecular steric effects and hydrogen bonding in regular conformations of polyamino acids. Biopolymers, 4, 887. Leach, S. J., Némethy, G., & Scheraga, H. A. (1966b). Intramolecular steric effects and hydrogen bonding in regular conformations of polyamino acids. Biopolymers, 4, 887.
go back to reference Levitt, M., & Lifson, S. (1969). Refinement of protein conformations using a macromolecular energy minimization procedure. Journal of Molecular Biology, 46, 269. Levitt, M., & Lifson, S. (1969). Refinement of protein conformations using a macromolecular energy minimization procedure. Journal of Molecular Biology, 46, 269.
go back to reference Lewars, E. G. (2011). Computational chemistry. Introduction to the theory and applications of molecular and quantum mechanics (2nd ed.). Dordrecht/Heidelberg/London/New York: Springer. Lewars, E. G. (2011). Computational chemistry. Introduction to the theory and applications of molecular and quantum mechanics (2nd ed.). Dordrecht/Heidelberg/London/New York: Springer.
go back to reference Lifson, S., & Warshel, A. (1968). Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n‐alkane molecules. The Journal of Chemical Physics, 49, 5116. Lifson, S., & Warshel, A. (1968). Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n‐alkane molecules. The Journal of Chemical Physics, 49, 5116.
go back to reference Lii, L.-H., & Allinger, N. L. (1991). The MM3 force field for amides, polypeptides and proteins. Journal of Computational Chemistry, 12, 186. Lii, L.-H., & Allinger, N. L. (1991). The MM3 force field for amides, polypeptides and proteins. Journal of Computational Chemistry, 12, 186.
go back to reference Lii, L.-H., Chen, K.-H., Johnson, G. P., French, A. D., & Allinger, N. L. (2005). The external-anomeric torsional effect. Carbohydrate Research, 340, 853. Lii, L.-H., Chen, K.-H., Johnson, G. P., French, A. D., & Allinger, N. L. (2005). The external-anomeric torsional effect. Carbohydrate Research, 340, 853.
go back to reference Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J., & Scheraga, H. A. (1999). Protein structure prediction by global optimization of a potential energy function. Proceedings of the National Academy of Sciences of the United States of America, 96, 5482. Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J., & Scheraga, H. A. (1999). Protein structure prediction by global optimization of a potential energy function. Proceedings of the National Academy of Sciences of the United States of America, 96, 5482.
go back to reference Lorecchio, C., Venanzi, M., Mazzuca, C., Lettieri, R., Palleschi, A., Thi, T. H. N., Cardová, L., Drasar, P., & Monti, D. (2014). Tuning the chiroptical and morphological properties of steroidal-porphyrin aggregates: A mechanistic, structural, and MM investigation. Organic & Biomolecular Chemistry, 12, 3956. Lorecchio, C., Venanzi, M., Mazzuca, C., Lettieri, R., Palleschi, A., Thi, T. H. N., Cardová, L., Drasar, P., & Monti, D. (2014). Tuning the chiroptical and morphological properties of steroidal-porphyrin aggregates: A mechanistic, structural, and MM investigation. Organic & Biomolecular Chemistry, 12, 3956.
go back to reference Maciejczyk, M., Spasic, A., Liwo, A., & Scheraga, H. A. (2010). Coarse-grained model of nucleic acid bases. Journal of Computational Chemistry, 31, 1644. Maciejczyk, M., Spasic, A., Liwo, A., & Scheraga, H. A. (2010). Coarse-grained model of nucleic acid bases. Journal of Computational Chemistry, 31, 1644.
go back to reference MacKerell, A. D., Jr. (2004). Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry, 25, 1584. MacKerell, A. D., Jr. (2004). Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry, 25, 1584.
go back to reference Mahoney, M. W., & Jorgensen, W. L. (2001). Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions. The Journal of Chemical Physics, 115, 10758. Mahoney, M. W., & Jorgensen, W. L. (2001). Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions. The Journal of Chemical Physics, 115, 10758.
go back to reference Mason, R. (1969). The intermolecular potential and structure of crystals of aromatic molecules. Molecular Crystals and Liquid Crystals, 9, 3. Mason, R. (1969). The intermolecular potential and structure of crystals of aromatic molecules. Molecular Crystals and Liquid Crystals, 9, 3.
go back to reference Matsuoka, O., Clementi, E., & Yoshimine, M. (1976). CI study of the water dimer potential surface. The Journal of Chemical Physics, 64, 1351. Matsuoka, O., Clementi, E., & Yoshimine, M. (1976). CI study of the water dimer potential surface. The Journal of Chemical Physics, 64, 1351.
go back to reference McAllister, S. R., & Floudas, C. A. (2010). An improved hybrid global optimization method for protein tertiary structure prediction. Computational Optimization and Applications, 45, 377. McAllister, S. R., & Floudas, C. A. (2010). An improved hybrid global optimization method for protein tertiary structure prediction. Computational Optimization and Applications, 45, 377.
go back to reference McGuire, R. F., Momany, F. A., & Scheraga, H. A. (1972). Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. The Journal of Physical Chemistry, 76, 375. McGuire, R. F., Momany, F. A., & Scheraga, H. A. (1972). Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. The Journal of Physical Chemistry, 76, 375.
go back to reference Momany, F. A., Vanderkooi, G., & Scheraga, H. A. (1968). Determination of intermolecular potentials from crystal data. I. General theory and application to crystalline benzene at several temperatures. Proceedings of the National Academy of Sciences of the United States of America, 61, 429. Momany, F. A., Vanderkooi, G., & Scheraga, H. A. (1968). Determination of intermolecular potentials from crystal data. I. General theory and application to crystalline benzene at several temperatures. Proceedings of the National Academy of Sciences of the United States of America, 61, 429.
go back to reference Momany, F. A., Carruthers, L. M., & Scheraga, H. A. (1974). Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing configurations and lattice energies in crystals of amino acids. The Journal of Physical Chemistry, 78, 1621. Momany, F. A., Carruthers, L. M., & Scheraga, H. A. (1974). Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing configurations and lattice energies in crystals of amino acids. The Journal of Physical Chemistry, 78, 1621.
go back to reference Momany, F. A., McGuire, R., Burgess, A., & Scheraga, H. (1975). Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. The Journal of Physical Chemistry, 79, 2361. Momany, F. A., McGuire, R., Burgess, A., & Scheraga, H. (1975). Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. The Journal of Physical Chemistry, 79, 2361.
go back to reference Nada, H., & van der Eerden, J. P. J. M. (2003). An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O. The Journal of Chemical Physics, 118, 7401. Nada, H., & van der Eerden, J. P. J. M. (2003). An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O. The Journal of Chemical Physics, 118, 7401.
go back to reference Nash, H. A., & Bradley, D. F. (1966). Calculation of the lowest energy configurations of nucleotide base pairs on the basis of an electrostatic model. The Journal of Chemical Physics, 45, 1380. Nash, H. A., & Bradley, D. F. (1966). Calculation of the lowest energy configurations of nucleotide base pairs on the basis of an electrostatic model. The Journal of Chemical Physics, 45, 1380.
go back to reference Némethy, G., & Scheraga, H. A. (1965). Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. Biopolymers, 3, 155. Némethy, G., & Scheraga, H. A. (1965). Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. Biopolymers, 3, 155.
go back to reference Némethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S., & Scheraga, H. A. (1992). Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. The Journal of Physical Chemistry, 96, 6472. Némethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S., & Scheraga, H. A. (1992). Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. The Journal of Physical Chemistry, 96, 6472.
go back to reference Ogata, K., & Nakamura, S. (2015). Improvement of parameters of the AMBER potential force field for phospholipids for description of thermal phase transitions. The Journal of Physical Chemistry. doi:10.1021/acs.jpcb.5b01656. Ogata, K., & Nakamura, S. (2015). Improvement of parameters of the AMBER potential force field for phospholipids for description of thermal phase transitions. The Journal of Physical Chemistry. doi:10.1021/acs.jpcb.5b01656.
go back to reference Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656. Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656.
go back to reference Pauling, L., & Corey, R. B. (1951). The pleated sheet, a new layer configuration of polypeptide chains. Proceedings of the National Academy of Sciences of the United States of America, 37, 251. Pauling, L., & Corey, R. B. (1951). The pleated sheet, a new layer configuration of polypeptide chains. Proceedings of the National Academy of Sciences of the United States of America, 37, 251.
go back to reference Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America, 37, 205. Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America, 37, 205.
go back to reference Pawar, S., Sawant, S., Nerkar, A., & Bhosale, A. (2014). In silico design, synthesis and pharmacological screening of novel 2-(6-substituted benzo [d] thiazol-2-yl) isoindoline-1, 3-diones as potential COX-2 inhibitors for anti-inflammatory activity. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 353. Pawar, S., Sawant, S., Nerkar, A., & Bhosale, A. (2014). In silico design, synthesis and pharmacological screening of novel 2-(6-substituted benzo [d] thiazol-2-yl) isoindoline-1, 3-diones as potential COX-2 inhibitors for anti-inflammatory activity. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 353.
go back to reference Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham, T. E., Laughton, C. A., & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers. Biophysical Journal, 92, 3817. Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham, T. E., Laughton, C. A., & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers. Biophysical Journal, 92, 3817.
go back to reference Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., & Klaus Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., & Klaus Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781.
go back to reference Pinilla, C., Irani, A. H., Nicola Seriani, N., & Scandolo, S. (2012). Ab initio parameterization of an all-atom polarizable and dissociable force field for water. The Journal of Chemical Physics, 136, 114511. Pinilla, C., Irani, A. H., Nicola Seriani, N., & Scandolo, S. (2012). Ab initio parameterization of an all-atom polarizable and dissociable force field for water. The Journal of Chemical Physics, 136, 114511.
go back to reference Pol-Fachin, L., Hugo Verli, H., & Lins, R. D. (2014). Extension and validation of the GROMOS 53A6glyc parameter set for glycoproteins. Journal of Computational Chemistry, 35, 2087. Pol-Fachin, L., Hugo Verli, H., & Lins, R. D. (2014). Extension and validation of the GROMOS 53A6glyc parameter set for glycoproteins. Journal of Computational Chemistry, 35, 2087.
go back to reference Polozov, R. V., Poltev, V. I., & Sukhorukov, B. I. (1973). Relation of the interactions of nucleic acid bases to the helical conformations of polynucleotides. Studia Biophysica, 40, 13. Polozov, R. V., Poltev, V. I., & Sukhorukov, B. I. (1973). Relation of the interactions of nucleic acid bases to the helical conformations of polynucleotides. Studia Biophysica, 40, 13.
go back to reference Poltev, V. I., & Bruskov, V. I. (1978). On molecular mechanisms of nucleic acid synthesis fidelity aspects 1. Contribution of base interactions. Journal of Theoretical Biology, 70, 69. Poltev, V. I., & Bruskov, V. I. (1978). On molecular mechanisms of nucleic acid synthesis fidelity aspects 1. Contribution of base interactions. Journal of Theoretical Biology, 70, 69.
go back to reference Poltev, V. I., & Shulyupina, N. V. (1986). Simulation of interactions between nucleic-acid bases by refined atom-atom potential functions. Journal of Biomolecular Structure & Dynamics, 3, 739. Poltev, V. I., & Shulyupina, N. V. (1986). Simulation of interactions between nucleic-acid bases by refined atom-atom potential functions. Journal of Biomolecular Structure & Dynamics, 3, 739.
go back to reference Poltev, V. I., & Sukhorukov, B. I. (1967). Theoretical examination of the physical nature of the intermolecular interactions determining the conformational state of polynucleotides. Biophysics (Moscow), 12, 879. Poltev, V. I., & Sukhorukov, B. I. (1967). Theoretical examination of the physical nature of the intermolecular interactions determining the conformational state of polynucleotides. Biophysics (Moscow), 12, 879.
go back to reference Poltev, V. I., & Sukhorukov, B. I. (1970). Semiempirical calculations of interaction energy of DNA nitrous bases. Studia Biophysica, 24/25, 179. Poltev, V. I., & Sukhorukov, B. I. (1970). Semiempirical calculations of interaction energy of DNA nitrous bases. Studia Biophysica, 24/25, 179.
go back to reference Poltev, V. I., Grokhlina, T. I., & Malenkov, G. G. (1984). Hydration of nucleic-acid bases studied using novel atom-atom potential functions. Journal of Biomolecular Stucture & Dynamics, 2, 413. Poltev, V. I., Grokhlina, T. I., & Malenkov, G. G. (1984). Hydration of nucleic-acid bases studied using novel atom-atom potential functions. Journal of Biomolecular Stucture & Dynamics, 2, 413.
go back to reference Pullman, A., & Pullman, B. (1968). Aspects of the electronic structure of the purine and pyrimidine bases of the nucleic acids and of their interactions. Advances in Quantum Chemistry, 4, 267. Pullman, A., & Pullman, B. (1968). Aspects of the electronic structure of the purine and pyrimidine bases of the nucleic acids and of their interactions. Advances in Quantum Chemistry, 4, 267.
go back to reference Pullman, B., Claverie, P., & Caillet, J. (1966). Van der Waals-London interactions and the configuration of hydrogen-bonded purine and pyrimidine pairs. Proceedings of National Academy of Sciences of United States of America, 55, 904. Pullman, B., Claverie, P., & Caillet, J. (1966). Van der Waals-London interactions and the configuration of hydrogen-bonded purine and pyrimidine pairs. Proceedings of National Academy of Sciences of United States of America, 55, 904.
go back to reference Rae, A. I. M., & Mason, R. (1968). The intermolecular potential and the lattice energy of benzene. Proceedings of the Royal Society A, 304, 487. Rae, A. I. M., & Mason, R. (1968). The intermolecular potential and the lattice energy of benzene. Proceedings of the Royal Society A, 304, 487.
go back to reference Ramachandran, G. N. (1990). This week’s citation classic. Current Contents, 10, 119. Ramachandran, G. N. (1990). This week’s citation classic. Current Contents, 10, 119.
go back to reference Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95. Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95.
go back to reference Ramachandran, K. I., Deepa, G., & Namboori, K. (2008). Computational chemistry and molecular modeling: Principles and applications. Berlin: Springer. Ramachandran, K. I., Deepa, G., & Namboori, K. (2008). Computational chemistry and molecular modeling: Principles and applications. Berlin: Springer.
go back to reference Raman, E. P., Guvench, O., & MacKerell, A. D., Jr. (2010). CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. The Journal of Physical Chemistry B, 114, 12981. Raman, E. P., Guvench, O., & MacKerell, A. D., Jr. (2010). CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. The Journal of Physical Chemistry B, 114, 12981.
go back to reference Rasse, D., Warme, P. K., & Scheraga, H. A. (1974). Refinement of the X-ray structure of rubredoxin by conformational energy calculations. Proceedings of the National Academy of Sciences of the United States of America, 71, 3736. Rasse, D., Warme, P. K., & Scheraga, H. A. (1974). Refinement of the X-ray structure of rubredoxin by conformational energy calculations. Proceedings of the National Academy of Sciences of the United States of America, 71, 3736.
go back to reference Ren, P., & Ponder, J. W. (2003). Polarizable atomic multipole water model for molecular mechanics simulation. The Journal of Physical Chemistry B, 107, 5933. Ren, P., & Ponder, J. W. (2003). Polarizable atomic multipole water model for molecular mechanics simulation. The Journal of Physical Chemistry B, 107, 5933.
go back to reference Ren, P., & Ponder, J. W. (2004). Temperature and pressure dependence of the AMOEBA water model. The Journal of Physical Chemistry B, 108, 13427. Ren, P., & Ponder, J. W. (2004). Temperature and pressure dependence of the AMOEBA water model. The Journal of Physical Chemistry B, 108, 13427.
go back to reference Ren, P., Wu, C., & Ponder, J. W. (2011). Polarizable atomic multipole-based molecular mechanics for organic molecules. Journal of Chemical Theory and Computation, 7, 314. Ren, P., Wu, C., & Ponder, J. W. (2011). Polarizable atomic multipole-based molecular mechanics for organic molecules. Journal of Chemical Theory and Computation, 7, 314.
go back to reference Renugopalakrishnan, V., Lakshminarayanan, A. V., & Sasisekharan, V. (1971). Stereochemistry of nucleic acids and polynucleotides III. Electronic charge distribution. Biopolymers, 10, 1159. Renugopalakrishnan, V., Lakshminarayanan, A. V., & Sasisekharan, V. (1971). Stereochemistry of nucleic acids and polynucleotides III. Electronic charge distribution. Biopolymers, 10, 1159.
go back to reference Ripoll, D. R., & Scheraga, H. A. (1988). On the multiple-minima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method – Tests on poly(l-alanine). Biopolymers, 27, 1283. Ripoll, D. R., & Scheraga, H. A. (1988). On the multiple-minima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method – Tests on poly(l-alanine). Biopolymers, 27, 1283.
go back to reference Rojas, A. V., Liwo, A., & Scheraga, H. A. (2011). A study of the α-helical intermediate preceding the aggregation of the amino-terminal fragment of the β amyloid peptide (Aβ1–28). The Journal of Physical Chemistry B, 115, 12978. Rojas, A. V., Liwo, A., & Scheraga, H. A. (2011). A study of the α-helical intermediate preceding the aggregation of the amino-terminal fragment of the β amyloid peptide (Aβ1–28). The Journal of Physical Chemistry B, 115, 12978.
go back to reference Savelyev, A., & MacKerell, A. D., Jr. (2014a). Balancing the interactions of ions, water and DNA in 1314 the Drude polarizable force field. The Journal of Physical Chemistry B, 118, 6742. Savelyev, A., & MacKerell, A. D., Jr. (2014a). Balancing the interactions of ions, water and DNA in 1314 the Drude polarizable force field. The Journal of Physical Chemistry B, 118, 6742.
go back to reference Savelyev, A., & MacKerell, A. D., Jr. (2014b). All-atom polarizable force field for DNA based on 1317 the classical Drude oscillator model. Journal of Computational Chemistry, 35, 1219. Savelyev, A., & MacKerell, A. D., Jr. (2014b). All-atom polarizable force field for DNA based on 1317 the classical Drude oscillator model. Journal of Computational Chemistry, 35, 1219.
go back to reference Sawant, R. L., Hardas, D. B., Pawa, K. K., & Shinde, A. K. (2014). QSAR analysis of structurally similar 1, 3, 4-oxadiazole/thiadiazole and 1, 2, 4-triazole derivatives of biphenyl-4-yloxy acetic acid as antiinflammatoryagents. World Journal of Pharmaceutical Research, 3, 1844. Sawant, R. L., Hardas, D. B., Pawa, K. K., & Shinde, A. K. (2014). QSAR analysis of structurally similar 1, 3, 4-oxadiazole/thiadiazole and 1, 2, 4-triazole derivatives of biphenyl-4-yloxy acetic acid as antiinflammatoryagents. World Journal of Pharmaceutical Research, 3, 1844.
go back to reference Scheraga, H. A. (2008). From helix–coil transitions to protein folding. Biopolymers, 89, 479. Scheraga, H. A. (2008). From helix–coil transitions to protein folding. Biopolymers, 89, 479.
go back to reference Scheraga, H. A. (2015). My 65 years in protein chemistry. Quarterly Reviews of Biophysics, 48, 117. Scheraga, H. A. (2015). My 65 years in protein chemistry. Quarterly Reviews of Biophysics, 48, 117.
go back to reference Scheraga, H. A., Pillardy, J., Liwo, A., Lee, J., Czaplewski, C., Ripoll, D. R., Wedemeyer, W. J., & Arnautova, Y. A. (2002). Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. Journal of Computational Chemistry, 23, 28. Scheraga, H. A., Pillardy, J., Liwo, A., Lee, J., Czaplewski, C., Ripoll, D. R., Wedemeyer, W. J., & Arnautova, Y. A. (2002). Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. Journal of Computational Chemistry, 23, 28.
go back to reference Scott, R. A., & Scheraga, H. A. (1966a). Conformational analysis of macromolecules. III. Helical structures of poly-glycine and poly-l-alanine. The Journal of Chemical Physics, 45, 2091. Scott, R. A., & Scheraga, H. A. (1966a). Conformational analysis of macromolecules. III. Helical structures of poly-glycine and poly-l-alanine. The Journal of Chemical Physics, 45, 2091.
go back to reference Scott, R. A., & Scheraga, H. A. (1966b). Conformational analysis of macromolecules. II. The rotational isomeric states of the normal hydrocarbons. Journal of Chemical Physics, 44, 3054. Scott, R. A., & Scheraga, H. A. (1966b). Conformational analysis of macromolecules. II. The rotational isomeric states of the normal hydrocarbons. Journal of Chemical Physics, 44, 3054.
go back to reference Shi, Y., Xia, Z., Zhang, J., Best, R., Wu, C., Ponder, J. W., & Ren, P. (2013). Polarizable atomic multipole-based AMOEBA force field for proteins. Journal of Chemical Theory and Computation, 9, 4046. Shi, Y., Xia, Z., Zhang, J., Best, R., Wu, C., Ponder, J. W., & Ren, P. (2013). Polarizable atomic multipole-based AMOEBA force field for proteins. Journal of Chemical Theory and Computation, 9, 4046.
go back to reference Shipman, L. L., Burgess, A. W., & Scheraga, H. A. (1975). A new approach to empirical intermolecular and conformational potential energy functions. I. Description of model and derivation of parameters. Proceedings of the National Academy of Sciences of the United States of America, 72, 543. Shipman, L. L., Burgess, A. W., & Scheraga, H. A. (1975). A new approach to empirical intermolecular and conformational potential energy functions. I. Description of model and derivation of parameters. Proceedings of the National Academy of Sciences of the United States of America, 72, 543.
go back to reference Sippl, M. J., Némethy, G., & Scheraga, H. A. (1984). Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O–H⋯O=C hydrogen bonds from packing configurations. Journal of Physics Chemistry, 88, 6231. Sippl, M. J., Némethy, G., & Scheraga, H. A. (1984). Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O–H⋯O=C hydrogen bonds from packing configurations. Journal of Physics Chemistry, 88, 6231.
go back to reference Snir, J., Nemenoff, R. A., & Scheraga, H. A. (1978). A revised empirical potential for conformational, intermolecular, and solvation studies. 5. Development and testing of parameters for amides, amino acids and peptides. The Journal of Physical Chemistry, 82, 2527. Snir, J., Nemenoff, R. A., & Scheraga, H. A. (1978). A revised empirical potential for conformational, intermolecular, and solvation studies. 5. Development and testing of parameters for amides, amino acids and peptides. The Journal of Physical Chemistry, 82, 2527.
go back to reference Song, K., Hornak, V., de los Santos, C., Grollman, A. P., & Simmerling, C. (2008). Molecular mechanics parameters for the FapydG DNA lesion. Journal of Computational Chemistry, 29, 17. Song, K., Hornak, V., de los Santos, C., Grollman, A. P., & Simmerling, C. (2008). Molecular mechanics parameters for the FapydG DNA lesion. Journal of Computational Chemistry, 29, 17.
go back to reference Stillinger, F. H., & Rahman, A. (1974). Improved simulation of liquid water by molecular dynamics. The Journal of Chemical Physics, 60, 1545. Stillinger, F. H., & Rahman, A. (1974). Improved simulation of liquid water by molecular dynamics. The Journal of Chemical Physics, 60, 1545.
go back to reference Tröster, P., Lorenzen, K., & Tavan, P. (2014). Polarizable six-point water models from computational and empirical optimization. The Journal of Physical Chemistry B, 118, 1589. Tröster, P., Lorenzen, K., & Tavan, P. (2014). Polarizable six-point water models from computational and empirical optimization. The Journal of Physical Chemistry B, 118, 1589.
go back to reference Van der Spoel, D., Lindahl, E., Hess, B., Groehof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701. Van der Spoel, D., Lindahl, E., Hess, B., Groehof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701.
go back to reference Van Gunsteren, W., Fand, H. J., & Berendsen, C. (1987). Groningen molecular simulation (GROMOS) library manual. Groningen: BIOMOS. Van Gunsteren, W., Fand, H. J., & Berendsen, C. (1987). Groningen molecular simulation (GROMOS) library manual. Groningen: BIOMOS.
go back to reference Vanommeslaeghe, K., & MacKerell, A. D., Jr. (2015). CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochimica et Biophysica Acta, General Subjects, 1850, 861. Vanommeslaeghe, K., & MacKerell, A. D., Jr. (2015). CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochimica et Biophysica Acta, General Subjects, 1850, 861.
go back to reference Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21, 1049. Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21, 1049.
go back to reference Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general AMBER force field. Journal of Computational Chemistry, 25, 1157. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general AMBER force field. Journal of Computational Chemistry, 25, 1157.
go back to reference Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modeling, 25, 247. Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modeling, 25, 247.
go back to reference Wang, L.-P., Chen, J., & van Voorhis, T. (2013a). Systematic parametrization of polarizable force fields from quantum chemistry data. Journal of Chemical Theory and Computation, 9, 452. Wang, L.-P., Chen, J., & van Voorhis, T. (2013a). Systematic parametrization of polarizable force fields from quantum chemistry data. Journal of Chemical Theory and Computation, 9, 452.
go back to reference Wang, L.-P., Head-Gordon, T., Ponder, J. W., Ren, P., Chodera, J. D., Eastman, P. K., Martinez, T. J., & Pande, V. S. (2013b). Systematic improvement of a classical molecular model of water. The Journal of Physical Chemistry B, 117, 9956. Wang, L.-P., Head-Gordon, T., Ponder, J. W., Ren, P., Chodera, J. D., Eastman, P. K., Martinez, T. J., & Pande, V. S. (2013b). Systematic improvement of a classical molecular model of water. The Journal of Physical Chemistry B, 117, 9956.
go back to reference Warme, P. K., & Scheraga, H. A. (1974). Refinement of the X-ray structure of lysozyme by complete energy minimization. Biochemistry, 13, 757. Warme, P. K., & Scheraga, H. A. (1974). Refinement of the X-ray structure of lysozyme by complete energy minimization. Biochemistry, 13, 757.
go back to reference Warme, P. K., Momany, F. A., Rumball, S. V., & Scheraga, H. A. (1974). Computation of structures of homologous proteins; α-lactalbumin from lysozyme. Biochemistry, 13, 768. Warme, P. K., Momany, F. A., Rumball, S. V., & Scheraga, H. A. (1974). Computation of structures of homologous proteins; α-lactalbumin from lysozyme. Biochemistry, 13, 768.
go back to reference Warshel, A., & Lifson, S. (1970). Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. The Journal of Chemical Physics, 53, 582. Warshel, A., & Lifson, S. (1970). Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. The Journal of Chemical Physics, 53, 582.
go back to reference Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737. Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737.
go back to reference Weiner, P., & Kollman, P. (1981). AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. Journal of Computational Chemistry, 2, 287. Weiner, P., & Kollman, P. (1981). AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. Journal of Computational Chemistry, 2, 287.
go back to reference Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., Jr., & Weiner, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106, 765. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., Jr., & Weiner, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106, 765.
go back to reference Westheimer, F. H., & Mayer, J. E. (1946). The theory of the racemization of optically active derivatives of diphenyl. The Journal of Chemical Physics, 14, 733. Westheimer, F. H., & Mayer, J. E. (1946). The theory of the racemization of optically active derivatives of diphenyl. The Journal of Chemical Physics, 14, 733.
go back to reference Wiberg, K. B. (1965). A scheme for strain energy minimization. Application to the cycloalkanes. Journal of the American Chemical Society, 87, 1070. Wiberg, K. B. (1965). A scheme for strain energy minimization. Application to the cycloalkanes. Journal of the American Chemical Society, 87, 1070.
go back to reference Williams, D. E. (1966). Nonbonded potential parameters derived from crystalline aromatic hydrocarbons. The Journal of Chemical Physics, 45, 3770. Williams, D. E. (1966). Nonbonded potential parameters derived from crystalline aromatic hydrocarbons. The Journal of Chemical Physics, 45, 3770.
go back to reference Williams, D. E. (1967). Nonbonded potential parameters derived from crystalline hydrocarbons. The Journal of Chemical Physics, 47, 4680. Williams, D. E. (1967). Nonbonded potential parameters derived from crystalline hydrocarbons. The Journal of Chemical Physics, 47, 4680.
go back to reference Williams, D. E., & Weller, R. R. (1983). Lone-pair electronic effects on the calculated ab initio SCF-MO electric potential and the crystal structures of azabenzenes. Journal of the American Chemical Society, 105, 4143. Williams, D. E., & Weller, R. R. (1983). Lone-pair electronic effects on the calculated ab initio SCF-MO electric potential and the crystal structures of azabenzenes. Journal of the American Chemical Society, 105, 4143.
go back to reference Yan, J. F., Momany, F. A., Hoffmann, R., & Scheraga, H. A. (1970). Energy parameters in polypeptides. II. Semiempirical molecular orbital calculations for model peptides. The Journal of Physical Chemistry, 74, 420. Yan, J. F., Momany, F. A., Hoffmann, R., & Scheraga, H. A. (1970). Energy parameters in polypeptides. II. Semiempirical molecular orbital calculations for model peptides. The Journal of Physical Chemistry, 74, 420.
go back to reference Yilmazer, N. D., & Korth, M. (2015). Enhanced semiempirical QM methods for biomolecular interactions. Computational and Structural Biotechnology Journal, 13, 169. Yilmazer, N. D., & Korth, M. (2015). Enhanced semiempirical QM methods for biomolecular interactions. Computational and Structural Biotechnology Journal, 13, 169.
go back to reference Yin, Y., Sieradzan, A. K., Liwo, A., He, Y., & Scheraga, H. A. (2015). Physics-based potentials for coarse-grained modeling of protein-DNA interactions. Journal of Chemical Theory and Computation, 11, 1792. Yin, Y., Sieradzan, A. K., Liwo, A., He, Y., & Scheraga, H. A. (2015). Physics-based potentials for coarse-grained modeling of protein-DNA interactions. Journal of Chemical Theory and Computation, 11, 1792.
go back to reference Yu, W., Lopes, P. E. M., Roux, B., & MacKerell, A. D. (2013). Six-site polarizable model of water based on the classical Drude oscillator. The Journal of Chemical Physics, 138, 034508. Yu, W., Lopes, P. E. M., Roux, B., & MacKerell, A. D. (2013). Six-site polarizable model of water based on the classical Drude oscillator. The Journal of Chemical Physics, 138, 034508.
go back to reference Zgarbova, M., Otyepka, M., Sponer, J., Mladek, A., Banas, P., Cheatham, T. E., & Jurecka, P. (2011). Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. Journal of Chemical Theory and Computation, 7, 2886. Zgarbova, M., Otyepka, M., Sponer, J., Mladek, A., Banas, P., Cheatham, T. E., & Jurecka, P. (2011). Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. Journal of Chemical Theory and Computation, 7, 2886.
go back to reference Zgarbova, M., Luque, F. J., Sponer, J., Cheatham, T. E., Otyepka, M., & Jurecka, P. (2013). Toward improved description of DNA backbone: Revisiting epsilon and zeta torsion force field parameters. Journal of Chemical Theory and Computation, 9, 2339. Zgarbova, M., Luque, F. J., Sponer, J., Cheatham, T. E., Otyepka, M., & Jurecka, P. (2013). Toward improved description of DNA backbone: Revisiting epsilon and zeta torsion force field parameters. Journal of Chemical Theory and Computation, 9, 2339.
go back to reference Zhurkin, V. B., Poltev, V. I., & Florentiev, V. L. (1980). Atom-atom potential functions for conformational calculations of nucleic-acids. Molecular Biology (Moscow), English Translation, 14, 882. Zhurkin, V. B., Poltev, V. I., & Florentiev, V. L. (1980). Atom-atom potential functions for conformational calculations of nucleic-acids. Molecular Biology (Moscow), English Translation, 14, 882.
Metadata
Title
Molecular Mechanics: Principles, History, and Current Status
Author
Valeri Poltev
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-27282-5_9

Premium Partner