Skip to main content
Top

2020 | OriginalPaper | Chapter

Molecularly Imprinted Polymers and Optical Fiber Sensors for Security Applications

Authors : Nunzio Cennamo, Maria Pesavento, Simone Marchetti, Luigi Zeni

Published in: Advanced Materials for Defense

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years several approaches to the optical monitoring of Molecularly Imprinted Polymers (MIPs) via optical fibers have been developed with very promising developments in the field of sensing. In this paper, we report about sensing platforms based on MIPs combined with Plastic Optical Fiber (POF) which appear to be useful for security and defense. In particular, two optical chemical sensor configurations for 2,4,6-trinitrotoluene (TNT) detection in water are reported. These sensor configurations are based on the same Molecularly Imprinted Polymer receptor, but the first one is combined with a Surface Plasmon Resonance (SPR) platform and the second one with a Localized Surface Plasmon Resonance (LSPR) platform, both realized exploiting D-shaped Plastic Optical Fibers (POFs).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Leung A, Shankar PM, Mutharasan R (2007) A review of fiber-optic biosensors. Sens Act B Chem 125:688–703CrossRef Leung A, Shankar PM, Mutharasan R (2007) A review of fiber-optic biosensors. Sens Act B Chem 125:688–703CrossRef
2.
go back to reference Wang XD, Wolfbeis OS (2013) Fiber-optic chemical sensors and biosensors (2008–2012). Anal Chem 85:487–508CrossRef Wang XD, Wolfbeis OS (2013) Fiber-optic chemical sensors and biosensors (2008–2012). Anal Chem 85:487–508CrossRef
3.
go back to reference Wang XD, Wolfbeis OS (2016) Fiber-optic chemical sensors and biosensors (2013–2015). Anal Chem 88:203–227CrossRef Wang XD, Wolfbeis OS (2016) Fiber-optic chemical sensors and biosensors (2013–2015). Anal Chem 88:203–227CrossRef
4.
go back to reference Monk DJ, Walt DR (2004) Optical fiber-based biosensors. Anal Bioanal Chem 379:931–945CrossRef Monk DJ, Walt DR (2004) Optical fiber-based biosensors. Anal Bioanal Chem 379:931–945CrossRef
5.
go back to reference Baldini F, Brenci M, Chiavaioli F, Giannetti A, Trono C (2012) Optical fibre gratings as tools for chemical and biochemical sensing. Anal Bioanal Chem 402:109CrossRef Baldini F, Brenci M, Chiavaioli F, Giannetti A, Trono C (2012) Optical fibre gratings as tools for chemical and biochemical sensing. Anal Bioanal Chem 402:109CrossRef
6.
go back to reference Consales M, Ricciardi A, Crescitelli A, Esposito E, Cutolo A, Cusano A (2012) Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano 6:3163CrossRef Consales M, Ricciardi A, Crescitelli A, Esposito E, Cutolo A, Cusano A (2012) Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano 6:3163CrossRef
7.
go back to reference Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sens Act B Chem 12:213–220CrossRef Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sens Act B Chem 12:213–220CrossRef
8.
go back to reference Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539CrossRef Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539CrossRef
9.
go back to reference Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Act B Chem 54:3–15CrossRef Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Act B Chem 54:3–15CrossRef
10.
go back to reference Anuj K, Sharma RJ, Gupta BD (2007) Fiber-optic sensors based on surface Plasmon resonance: a comprehensive review. IEEE Sens J 7:1118–1129CrossRef Anuj K, Sharma RJ, Gupta BD (2007) Fiber-optic sensors based on surface Plasmon resonance: a comprehensive review. IEEE Sens J 7:1118–1129CrossRef
11.
go back to reference Gupta BD, Kant R (2018) Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt Laser Technol 101:144–161CrossRef Gupta BD, Kant R (2018) Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt Laser Technol 101:144–161CrossRef
12.
go back to reference Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407:3883–3897CrossRef Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407:3883–3897CrossRef
13.
go back to reference Sanders M, Lin Y, Wei J, Bono T, Lindquist RG (2014) An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron 61:95–101CrossRef Sanders M, Lin Y, Wei J, Bono T, Lindquist RG (2014) An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron 61:95–101CrossRef
14.
go back to reference Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRef Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRef
15.
go back to reference Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24CrossRef Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24CrossRef
16.
go back to reference Sai VVR, Kundu T, Mukherji S (2009) Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosens Bioelectron 24:2804CrossRef Sai VVR, Kundu T, Mukherji S (2009) Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosens Bioelectron 24:2804CrossRef
17.
go back to reference Estevez MC, Otte MA, Sepulveda B, Lechuga LM (2014) Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta 806:55–73CrossRef Estevez MC, Otte MA, Sepulveda B, Lechuga LM (2014) Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta 806:55–73CrossRef
18.
go back to reference Klantsataya E, Jia P, Ebendorff-Heidepriem H, Monro TM, François A (2017) Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends. Sensors 17:12CrossRef Klantsataya E, Jia P, Ebendorff-Heidepriem H, Monro TM, François A (2017) Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends. Sensors 17:12CrossRef
19.
go back to reference Trouillet A, Ronot-Trioli C, Veillas C, Gagnaire H (1996) Chemical sensing by surface plasmon resonance in a multimode optical fiber. Pure Appl Opt 5:227–237CrossRef Trouillet A, Ronot-Trioli C, Veillas C, Gagnaire H (1996) Chemical sensing by surface plasmon resonance in a multimode optical fiber. Pure Appl Opt 5:227–237CrossRef
20.
go back to reference Cennamo N, Massarotti D, Conte L, Zeni L (2011) Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 11:11752–11760CrossRef Cennamo N, Massarotti D, Conte L, Zeni L (2011) Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 11:11752–11760CrossRef
21.
go back to reference Emiliyanov G, Høiby PE, Pedersen LH, Bang O (2013) Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers. Sensors 13:3242–3251CrossRef Emiliyanov G, Høiby PE, Pedersen LH, Bang O (2013) Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers. Sensors 13:3242–3251CrossRef
22.
go back to reference Yuan W, Khan L, Webb DJ, Kalli K, Rasmussen HK, Stefani A, Bang O (2011) Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt Express 19:19731–19739CrossRef Yuan W, Khan L, Webb DJ, Kalli K, Rasmussen HK, Stefani A, Bang O (2011) Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt Express 19:19731–19739CrossRef
23.
go back to reference Bilro L, Alberto N, Pinto JL, Nogueira R (2012) Optical sensors based on plastic fibers. Sensors 12:12184–12207CrossRef Bilro L, Alberto N, Pinto JL, Nogueira R (2012) Optical sensors based on plastic fibers. Sensors 12:12184–12207CrossRef
24.
go back to reference Jin Y, Granville AM (2016) Polymer fiber optic sensors—a mini review of their synthesis and applications. J Biosens Bioelectron 7:1–11CrossRef Jin Y, Granville AM (2016) Polymer fiber optic sensors—a mini review of their synthesis and applications. J Biosens Bioelectron 7:1–11CrossRef
25.
go back to reference Sequeira F, Duarte D, Bilro L, Rudnitskaya A, Pesavento M, Zeni L, Cennamo N (2016) Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications. Sensors 16:2119CrossRef Sequeira F, Duarte D, Bilro L, Rudnitskaya A, Pesavento M, Zeni L, Cennamo N (2016) Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications. Sensors 16:2119CrossRef
26.
go back to reference Cennamo N, D’Agostino G, Donà A, Dacarro G, Pallavicini P, Pesavento M, Zeni L (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors 13:14676–14686CrossRef Cennamo N, D’Agostino G, Donà A, Dacarro G, Pallavicini P, Pesavento M, Zeni L (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors 13:14676–14686CrossRef
27.
go back to reference Cennamo N, Alberti G, Pesavento M, D’Agostino G, Quattrini F, Biesuz R, Zeni L (2014) A simple small size and low cost sensor based on Surface Plasmon Resonance for selective detection of Fe(III). Sensors 14:4657–4671CrossRef Cennamo N, Alberti G, Pesavento M, D’Agostino G, Quattrini F, Biesuz R, Zeni L (2014) A simple small size and low cost sensor based on Surface Plasmon Resonance for selective detection of Fe(III). Sensors 14:4657–4671CrossRef
28.
go back to reference Aray A, Chiavaioli F, Arjmand M, Trono C, Tombelli S, Giannetti A, Cennamo N, Soltanolkotabi M, Zeni L, Baldini F (2016) SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum. J Biophotonics 9:1077–1084CrossRef Aray A, Chiavaioli F, Arjmand M, Trono C, Tombelli S, Giannetti A, Cennamo N, Soltanolkotabi M, Zeni L, Baldini F (2016) SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum. J Biophotonics 9:1077–1084CrossRef
29.
go back to reference Cennamo N, Zeni L, Tortora P, Regonesi ME, Giusti A, Staiano M, D’Auria S, Varriale A (2018) A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment. Talanta 178:955–961CrossRef Cennamo N, Zeni L, Tortora P, Regonesi ME, Giusti A, Staiano M, D’Auria S, Varriale A (2018) A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment. Talanta 178:955–961CrossRef
30.
go back to reference Cennamo N, D’Agostino G, Galatus R, Bibbò L, Pesavento M, Zeni L (2013) Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens Actuators B Chem 188:221–226CrossRef Cennamo N, D’Agostino G, Galatus R, Bibbò L, Pesavento M, Zeni L (2013) Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens Actuators B Chem 188:221–226CrossRef
31.
go back to reference Cennamo N, D’Agostino G, Pesavento M, Zeni L (2014) High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of L-nicotine. Sens Actuators B Chem 191:529–5365CrossRef Cennamo N, D’Agostino G, Pesavento M, Zeni L (2014) High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of L-nicotine. Sens Actuators B Chem 191:529–5365CrossRef
32.
go back to reference Cennamo N, Donà A, Pallavicini P, D’Agostino G, Dacarro G, Zeni L, Pesavento M (2015) Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens Actuators B Chem 208:291–298CrossRef Cennamo N, Donà A, Pallavicini P, D’Agostino G, Dacarro G, Zeni L, Pesavento M (2015) Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens Actuators B Chem 208:291–298CrossRef
33.
go back to reference Cennamo N, Testa G, Marchetti S, De Maria L, Bernini R, Zeni L, Pesavento M (2017) Intensity-based plastic optical fiber sensor with molecularly imprinted polymer sensitive layer. Sens Actuators B Chem 241:534–540CrossRef Cennamo N, Testa G, Marchetti S, De Maria L, Bernini R, Zeni L, Pesavento M (2017) Intensity-based plastic optical fiber sensor with molecularly imprinted polymer sensitive layer. Sens Actuators B Chem 241:534–540CrossRef
34.
go back to reference Cennamo N, De Maria L, Chemelli C, Profumo A, Zeni L, Pesavento M (2016) Markers detection in transformer oil by plasmonic chemical sensor system based on POF and MIPs. IEEE Sens J 16:7663–7670CrossRef Cennamo N, De Maria L, Chemelli C, Profumo A, Zeni L, Pesavento M (2016) Markers detection in transformer oil by plasmonic chemical sensor system based on POF and MIPs. IEEE Sens J 16:7663–7670CrossRef
35.
go back to reference Cennamo N, Pesavento M, Lunelli L, Vanzetti L, Pederzolli C, Zeni L, Pasquardini L (2015) An easy way to realize SPR aptasensor: a multimode plastic optical fiber platform for cancer biomarkers detection. Talanta 140:88–95CrossRef Cennamo N, Pesavento M, Lunelli L, Vanzetti L, Pederzolli C, Zeni L, Pasquardini L (2015) An easy way to realize SPR aptasensor: a multimode plastic optical fiber platform for cancer biomarkers detection. Talanta 140:88–95CrossRef
36.
go back to reference Sellergren B (1997) Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. Trends Anal Chem 16:310–320CrossRef Sellergren B (1997) Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. Trends Anal Chem 16:310–320CrossRef
37.
go back to reference Mayes AG, Mosbach K (1997) Molecularly imprinted polymers: useful materials for analytical chemistry? Trends Anal Chem 16:321–332CrossRef Mayes AG, Mosbach K (1997) Molecularly imprinted polymers: useful materials for analytical chemistry? Trends Anal Chem 16:321–332CrossRef
38.
go back to reference Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504CrossRef Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504CrossRef
39.
go back to reference Smith RG, D’Souza N, Nicklin S (2008) A review of biosensors and biologically inspired systems for explosives detection. Analyst 133:571–584CrossRef Smith RG, D’Souza N, Nicklin S (2008) A review of biosensors and biologically inspired systems for explosives detection. Analyst 133:571–584CrossRef
40.
go back to reference Cerruti M, Jaworski J, Raorane D, Zueger C, Varadarajan J, Carraro C, Lee SW, Maboudian R, Majumdar R (2009) Polymer-oligopeptide composite coating for selective detection of explosives in water. Anal Chem 81:4192–4199CrossRef Cerruti M, Jaworski J, Raorane D, Zueger C, Varadarajan J, Carraro C, Lee SW, Maboudian R, Majumdar R (2009) Polymer-oligopeptide composite coating for selective detection of explosives in water. Anal Chem 81:4192–4199CrossRef
41.
go back to reference Giannetto M, Maialini E, Ferri EN, Girotti EN, Mori G, Careri M (2013) Competitive amperometric immunosensor based on covalent linking of a protein conjugate to dendrimer-functionalised nanogold substrate for the determination of 2,4,6-trinitrotoluene. Anal Bioanal Chem 405:737–743CrossRef Giannetto M, Maialini E, Ferri EN, Girotti EN, Mori G, Careri M (2013) Competitive amperometric immunosensor based on covalent linking of a protein conjugate to dendrimer-functionalised nanogold substrate for the determination of 2,4,6-trinitrotoluene. Anal Bioanal Chem 405:737–743CrossRef
42.
go back to reference Pesavento M, D’Agostino G, Alberti G, Biesuz R, Merli D (2013) Voltammetric plat-form for detection of 2,4,6-trinitrotoluene based on a molecularly imprinted polymer. Anal Bioanal Chem 405:3559–3570CrossRef Pesavento M, D’Agostino G, Alberti G, Biesuz R, Merli D (2013) Voltammetric plat-form for detection of 2,4,6-trinitrotoluene based on a molecularly imprinted polymer. Anal Bioanal Chem 405:3559–3570CrossRef
43.
go back to reference Pallavicini P, Donà A, Casu A, Chirico G, Collini M, Dacarro G, Falqui A, Milanese C, Sironi L, Taglietti A (2013) Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem Commun 49:6265–6267CrossRef Pallavicini P, Donà A, Casu A, Chirico G, Collini M, Dacarro G, Falqui A, Milanese C, Sironi L, Taglietti A (2013) Triton X-100 for three-plasmon gold nanostars with two photothermally active NIR (near IR) and SWIR (short-wavelength IR) channels. Chem Commun 49:6265–6267CrossRef
Metadata
Title
Molecularly Imprinted Polymers and Optical Fiber Sensors for Security Applications
Authors
Nunzio Cennamo
Maria Pesavento
Simone Marchetti
Luigi Zeni
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-34123-7_2

Premium Partners