Skip to main content
Top

2012 | OriginalPaper | Chapter

Molten Carbonate Fuel Cells

Author : Dr. Takao Watanabe

Published in: Handbook of Climate Change Mitigation

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Molten carbonate fuel cell (MCFC) is a high-temperature fuel cell. Because of high-temperature operation, various fuel gases can be widely used and internal reforming of hydrocarbon fuel is also possible, resulting in improving fuel utilization and providing higher power generation efficiency. Many MCFC plants are being installed as the stationary cogeneration power supply using various fuels in various countries in the world, and among them, the world’s largest fuel cell power plant has 2.8 MW electric capacity. The power generation efficiency of the systems including smaller 300 kW units reaches 47% (LHV, net, same as above unless otherwise noted). In addition, the hybrid systems which contain both MCFC and gas turbine have been demonstrated, and a new carbon dioxide (CO2) recovering hybrid system concept with extremely high value of 77% efficiency is proposed. The advantage of MCFC is not only the use of city gas but also the use of digestion gas from the sewage disposal plant. In the future, it is expected to develop a large-scale centralized electric power generating plant using the coal gasification gas. The MCFC is one of the key technologies to reduce CO2 emission for the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference U.S. Department of Energy (2004) Fuel Cell Handbook, 7th edn. U.S. Department of Energy, West Virginia U.S. Department of Energy (2004) Fuel Cell Handbook, 7th edn. U.S. Department of Energy, West Virginia
3.
go back to reference Morita H, Mugikura Y, Izaki Y, Watanabe T, Abe T (1998) Model of cathode reaction resistance in molten carbonate fuel cells. J Electrochem Soc 145:A1511–1517CrossRef Morita H, Mugikura Y, Izaki Y, Watanabe T, Abe T (1998) Model of cathode reaction resistance in molten carbonate fuel cells. J Electrochem Soc 145:A1511–1517CrossRef
4.
go back to reference Morita H, Komoda M, Mugikura Y, Izaki Y, Watanabe T, Masuda Y, Matsuyama T (2002) Performance analysis of molten carbonate fuel cell using Li/Na electrolyte. J Power Sources 112:509–518CrossRef Morita H, Komoda M, Mugikura Y, Izaki Y, Watanabe T, Masuda Y, Matsuyama T (2002) Performance analysis of molten carbonate fuel cell using Li/Na electrolyte. J Power Sources 112:509–518CrossRef
5.
go back to reference Yoshikawa M, Mugikura Y, Watanabe T, Ohta T, Suzuki A (1999) The behavior of MCFCs using Li/K and Li/Na carbonates as the electrolyte at high pressure. J Electrochem Soc 146:2834–2840CrossRef Yoshikawa M, Mugikura Y, Watanabe T, Ohta T, Suzuki A (1999) The behavior of MCFCs using Li/K and Li/Na carbonates as the electrolyte at high pressure. J Electrochem Soc 146:2834–2840CrossRef
6.
go back to reference Mugikura Y, Abe T, Yoshioka S, Urushibata H (1995) NiO dissolution in molten carbonate fuel cells: effect on performance and life. J Electrochem Soc 142:2971–2977CrossRef Mugikura Y, Abe T, Yoshioka S, Urushibata H (1995) NiO dissolution in molten carbonate fuel cells: effect on performance and life. J Electrochem Soc 142:2971–2977CrossRef
7.
go back to reference Yoshikawa M, Mugikura Y, Watanabe T, Kahara T, Mizukami T (2001) NiO cathode dissolution and Ni precipitation in Li/Na molten carbonate fuel cells. J Electrochem Soc 148:A1230–A1238CrossRef Yoshikawa M, Mugikura Y, Watanabe T, Kahara T, Mizukami T (2001) NiO cathode dissolution and Ni precipitation in Li/Na molten carbonate fuel cells. J Electrochem Soc 148:A1230–A1238CrossRef
8.
go back to reference Watanabe T (2001) Development of molten carbonate fuel cells in Japan – application of Li/Na electrolyte. Fuel Cells 1:1–7CrossRef Watanabe T (2001) Development of molten carbonate fuel cells in Japan – application of Li/Na electrolyte. Fuel Cells 1:1–7CrossRef
9.
go back to reference Krumpelt M, Ackerman J, Herceg J, Zwick S, Slack C, Lwin Y (1982) Gas systems. Fuel Cell Semin Abstr 127–133 Krumpelt M, Ackerman J, Herceg J, Zwick S, Slack C, Lwin Y (1982) Gas systems. Fuel Cell Semin Abstr 127–133
10.
go back to reference Bonds T, Dawes M, Schnacke A, Spradlin L (1981) Fuel cell plant integrated systems evaluation. Electric Power Research Institute Final Report, EM-1670 Bonds T, Dawes M, Schnacke A, Spradlin L (1981) Fuel cell plant integrated systems evaluation. Electric Power Research Institute Final Report, EM-1670
11.
go back to reference Mamantov G, Braunstein J (eds) (1981) Advances in molten salts chemistry, vol 4. Plenum, New York, p 391 Mamantov G, Braunstein J (eds) (1981) Advances in molten salts chemistry, vol 4. Plenum, New York, p 391
12.
go back to reference Leo T, Brdar D, Bentley C, Ludemann B, Farooque M, Oei P, Rauseo T (2007) Stationary DFC® power plants status. Fuel Cell Semin Abstr 50–53 Leo T, Brdar D, Bentley C, Ludemann B, Farooque M, Oei P, Rauseo T (2007) Stationary DFC® power plants status. Fuel Cell Semin Abstr 50–53
13.
go back to reference Farooque M, Leo A, Pawlaczyk R, Rauseo A, Venkataraman R (2009) Direct fuel cell stack design evolution. Fuel Cell Semin Abst DEM33-1:140–143 Farooque M, Leo A, Pawlaczyk R, Rauseo A, Venkataraman R (2009) Direct fuel cell stack design evolution. Fuel Cell Semin Abst DEM33-1:140–143
14.
go back to reference Farooque M, Venkataraman R, Rauseo T, Carlson G, Berntsen G (2007) Direct fuel cell (DFC®) improvements based on field experience. Fuel Cell Semin Abstr 44–47 Farooque M, Venkataraman R, Rauseo T, Carlson G, Berntsen G (2007) Direct fuel cell (DFC®) improvements based on field experience. Fuel Cell Semin Abstr 44–47
16.
go back to reference Rolf S (2006) Operation Experience with MTU’s Hot Module. Fuel Cell Semin Abstr 186 Rolf S (2006) Operation Experience with MTU’s Hot Module. Fuel Cell Semin Abstr 186
18.
go back to reference Marcenaro B (2008) Development and industrialisation of MCFC systems at ansaldo fuel cells. Fuel Cell Semin Abstr RDP33-1:145–149 Marcenaro B (2008) Development and industrialisation of MCFC systems at ansaldo fuel cells. Fuel Cell Semin Abstr RDP33-1:145–149
19.
go back to reference Nakayama T (2000) Current status of the fuel cell R&D program at Nedo. Fuel Cell Semin Abstr 9–13 Nakayama T (2000) Current status of the fuel cell R&D program at Nedo. Fuel Cell Semin Abstr 9–13
20.
go back to reference Toyota M, Dairaku M (2009) Development of CO2 capture system with MCFC. Fuel Cell Semin Abstr HRD33a-2:95–99 Toyota M, Dairaku M (2009) Development of CO2 capture system with MCFC. Fuel Cell Semin Abstr HRD33a-2:95–99
21.
go back to reference Kim S, Choi Y, Kuk S, Jun J, Lim H (2008) Status and recent progress of MCFC stack development in Korea. Fuel Cell Semin Abstr RDP33-3:154–157 Kim S, Choi Y, Kuk S, Jun J, Lim H (2008) Status and recent progress of MCFC stack development in Korea. Fuel Cell Semin Abstr RDP33-3:154–157
23.
go back to reference Ghezel-Ayagh H, Sanderson R, Leo A (1999) ultra high efficiency hybrid direct fuel cell/turbine power plant. Carbonate fuel cell technology V, PV99-20. The Electrochemical Society 297–305 Ghezel-Ayagh H, Sanderson R, Leo A (1999) ultra high efficiency hybrid direct fuel cell/turbine power plant. Carbonate fuel cell technology V, PV99-20. The Electrochemical Society 297–305
24.
go back to reference Ghezel-Ayagh H, Walzak J, Junker S, Patel D, Michelson F, Adriani A (2007) DFC/T® power plant: from sub-megawatt demonstration to multi-megawatt design. Fuel Cell Semin Abstr 54–57 Ghezel-Ayagh H, Walzak J, Junker S, Patel D, Michelson F, Adriani A (2007) DFC/T® power plant: from sub-megawatt demonstration to multi-megawatt design. Fuel Cell Semin Abstr 54–57
25.
go back to reference Ghezel-Ayagh H, Walzak J, Patel D, Jolly S, Lukas M, Michelson F, Adriani A (2008) Ultra high efficiency direct fuelcell systems for premium power generation. Fuel Cell Semin Abstr RDP33-2:150–153 Ghezel-Ayagh H, Walzak J, Patel D, Jolly S, Lukas M, Michelson F, Adriani A (2008) Ultra high efficiency direct fuelcell systems for premium power generation. Fuel Cell Semin Abstr RDP33-2:150–153
27.
go back to reference Patell P, Lipp L, Jahnke F, Holcomb F, Heydorn E (2009) Co-production of renewable hydrogen and electricity: technology development and demonstration. Fuel Cell Semin Abstr COM43-1:373–376 Patell P, Lipp L, Jahnke F, Holcomb F, Heydorn E (2009) Co-production of renewable hydrogen and electricity: technology development and demonstration. Fuel Cell Semin Abstr COM43-1:373–376
28.
go back to reference Koda E et al (2006) MCFC-GT Hybrid System Aiming At 70% Thermal Efficiency. ASME Turbo Expo 2006 Koda E et al (2006) MCFC-GT Hybrid System Aiming At 70% Thermal Efficiency. ASME Turbo Expo 2006
Metadata
Title
Molten Carbonate Fuel Cells
Author
Dr. Takao Watanabe
Copyright Year
2012
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7991-9_45