Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

10-09-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Monitoring of the Interaction of Aluminum Alloy and Sodium Chloride as the Basis for Ecological Production of Expanded Aluminum

Authors: I. Nová, K. Fraňa, T. Lipiňki

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

The article deals with the monitoring of the behavior of sodium chloride in interaction with the aluminum alloy melt. Sodium chloride is an excellent substance for the production of expanded aluminum materials. Its melting point is 801°C and an advantageous is that NaCl can be easy applicable from an ecological point of view. The theoretical calculations of melt penetration between sodium chloride grains were performed and the angle of wetting of sodium chloride particles by aluminum melt was determined. Furthermore, it has been confirmed that a vacuum system with an inert gas is essential to produce expanded aluminum materials. Additionally, a method of pressing sodium chloride into an aluminum alloy melt has been developed; the minimum pressure of 150 MPa was important for successful pressing process. Properties of produced materials (particularly relative density, porosity, Young’s modulus of elasticity, thermal conductivity) were studied on the obtained samples of porous aluminum materials.
Literature
1.
go back to reference S. F. Aida, M. N. Hijrah, A. H. Amirah, H. Zuhailawati, and A. S. Anasyida, “Effect of NaCl as a space holder in producing open cell A356 aluminum foam by gravity die casting process,” Procedia Chem. 19, 234 – 240 (2016). CrossRef S. F. Aida, M. N. Hijrah, A. H. Amirah, H. Zuhailawati, and A. S. Anasyida, “Effect of NaCl as a space holder in producing open cell A356 aluminum foam by gravity die casting process,” Procedia Chem. 19, 234 – 240 (2016). CrossRef
2.
go back to reference Z. Hussain, and N. S. A. Suffin, “Microstructure and mechanical behaviour of aluminum foam produced by sintering dissolution process using NaCl space holder,” J. Eng. Sci. 7, 37–49 (2011). Z. Hussain, and N. S. A. Suffin, “Microstructure and mechanical behaviour of aluminum foam produced by sintering dissolution process using NaCl space holder,” J. Eng. Sci. 7, 37–49 (2011).
3.
go back to reference S. Báez-Pimiento M. E. Hernández-Rojas, M. Palomar-Pardavé, “Processing and characte-rization of open–cell aluminum foams obtained through infiltration processes,” Procedia Mater. Sci., No. 9, 54–61 (2015). S. Báez-Pimiento M. E. Hernández-Rojas, M. Palomar-Pardavé, “Processing and characte-rization of open–cell aluminum foams obtained through infiltration processes,” Procedia Mater. Sci., No. 9, 54–61 (2015).
4.
go back to reference H. Bafti and A. Habibolahzadeh, “Production of aluminum foam by spherical carbamide space holder technique-processing parameters,” Mat. Des. 31, 4122–4129 (2010). CrossRef H. Bafti and A. Habibolahzadeh, “Production of aluminum foam by spherical carbamide space holder technique-processing parameters,” Mat. Des. 31, 4122–4129 (2010). CrossRef
5.
go back to reference J. Banhart and H. Eifert, Metal Foams (Verlag MIT Publishing, Bremen, 1997). J. Banhart and H. Eifert, Metal Foams (Verlag MIT Publishing, Bremen, 1997).
6.
go back to reference J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mater. Sci. 46, 559–635 (2001). CrossRef J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mater. Sci. 46, 559–635 (2001). CrossRef
7.
go back to reference G. J. Davies and S. Zhen, “Metallic foams: “Their production, properties and applications,” J. Mater. Sci. 18, 1899–1911 (1983). CrossRef G. J. Davies and S. Zhen, “Metallic foams: “Their production, properties and applications,” J. Mater. Sci. 18, 1899–1911 (1983). CrossRef
8.
go back to reference L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, 1999). L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, 1999).
9.
go back to reference J. Jerz, “Foamed aluminum and aluminum alloys prepared by powder metallurgy,” Ph.D thesis (TU Vienna, 1995). J. Jerz, “Foamed aluminum and aluminum alloys prepared by powder metallurgy,” Ph.D thesis (TU Vienna, 1995).
10.
go back to reference F. G. Moreno, “Commercial application of metal foams: Their properties and production,” Materials 9, 1–27 (2016). F. G. Moreno, “Commercial application of metal foams: Their properties and production,” Materials 9, 1–27 (2016).
11.
go back to reference E. M. Luna, F. Barari, R. Woolley, and R. Coddall, “Casting protocols for the production of open cell aluminum foams by the replication technique and the effect on porosity,” J. Visualized Exp. 94, 52268 (2014). E. M. Luna, F. Barari, R. Woolley, and R. Coddall, “Casting protocols for the production of open cell aluminum foams by the replication technique and the effect on porosity,” J. Visualized Exp. 94, 52268 (2014).
12.
go back to reference I. Sh. Trakhtenberg, A. A. Borisov, V. I. Novozhonov, A. P. Rubshtein, A. B. Vladimirov, A. V. Osipenko, V. A. Mukhachev and E. B. Makarova, “Mechanical properties and the structure of porous titanium obtained by sintering compacted titanium sponge,” Phys. Met. Metallogr. 105, No. 1, 92–97 (2008). CrossRef I. Sh. Trakhtenberg, A. A. Borisov, V. I. Novozhonov, A. P. Rubshtein, A. B. Vladimirov, A. V. Osipenko, V. A. Mukhachev and E. B. Makarova, “Mechanical properties and the structure of porous titanium obtained by sintering compacted titanium sponge,” Phys. Met. Metallogr. 105, No. 1, 92–97 (2008). CrossRef
13.
go back to reference N. B. Pugacheva, N. S. Michurov, and T. M. Bykova, “Structure and properties of the Al/SiC composite material,” Phys. Met. Metallogr. 117, No. 6, 634–640 (2016). CrossRef N. B. Pugacheva, N. S. Michurov, and T. M. Bykova, “Structure and properties of the Al/SiC composite material,” Phys. Met. Metallogr. 117, No. 6, 634–640 (2016). CrossRef
14.
go back to reference A. V. Pozdniakov, A. Lotfy, A. Qadir, and V. S. Zdoto-revskiy, “Effect of the B 4C content on the structure and thermal expansion coefficient of the Al–5% Cu alloy-based metal-matrix composite material,” Phys. Met. Metallogr. 117, No. 8, 783–788 (2016). CrossRef A. V. Pozdniakov, A. Lotfy, A. Qadir, and V. S. Zdoto-revskiy, “Effect of the B 4C content on the structure and thermal expansion coefficient of the Al–5% Cu alloy-based metal-matrix composite material,” Phys. Met. Metallogr. 117, No. 8, 783–788 (2016). CrossRef
15.
go back to reference L. S. Vasil’ev and S. L. Lomaev, “Influence of pressure on of formation and evolution of the nanostructure in plastically deformed metals and alloys,” Phys. Met. Metallogr. 120, No 6, 600–606 (2019). CrossRef L. S. Vasil’ev and S. L. Lomaev, “Influence of pressure on of formation and evolution of the nanostructure in plastically deformed metals and alloys,” Phys. Met. Metallogr. 120, No 6, 600–606 (2019). CrossRef
16.
go back to reference A. S. Tsapleva, I. M. Abdyukhanov, K. O. Bazaleeva, A. A. Aleksandrova, and M. V. Alekseev, “Texture of Nb filaments and Nb 3Sn phase in technical superconductors fabricated by bronze and internal-tin-source techniques,” Phys. Met. Metallogr. 121, No. 5, 471–475 (2020). CrossRef A. S. Tsapleva, I. M. Abdyukhanov, K. O. Bazaleeva, A. A. Aleksandrova, and M. V. Alekseev, “Texture of Nb filaments and Nb 3Sn phase in technical superconductors fabricated by bronze and internal-tin-source techniques,” Phys. Met. Metallogr. 121, No. 5, 471–475 (2020). CrossRef
17.
go back to reference F. Bainbridge and J. A. Taylor, “The surface tension of pure aluminum and aluminum alloys,” Metall. Mater. Trans. A 44, 3901–3909 (2013). CrossRef F. Bainbridge and J. A. Taylor, “The surface tension of pure aluminum and aluminum alloys,” Metall. Mater. Trans. A 44, 3901–3909 (2013). CrossRef
18.
go back to reference I. Egry, E. Ricci, R. Novakovic, and S. Ozawa, “Surface tension of liquid matals and alloys—Recent development,” Adv. Colloid Interf. Sci. 159, 198–212 (2010). CrossRef I. Egry, E. Ricci, R. Novakovic, and S. Ozawa, “Surface tension of liquid matals and alloys—Recent development,” Adv. Colloid Interf. Sci. 159, 198–212 (2010). CrossRef
19.
go back to reference H. Darcy, “Les fontaines publiques de la ville de dijon”. Exposition et application des principles á suivre et des formulaes á employer dans les questions de distribution d’ean. (Victor Dalmont, Paris, 1856). H. Darcy, “Les fontaines publiques de la ville de dijon”. Exposition et application des principles á suivre et des formulaes á employer dans les questions de distribution d’ean. (Victor Dalmont, Paris, 1856).
20.
go back to reference J. Vohlídal, K. Štulík, and A. Julák, Chemical and Analytical Tables Grada Publishing, Prague, 1999) (in Czech). J. Vohlídal, K. Štulík, and A. Julák, Chemical and Analytical Tables Grada Publishing, Prague, 1999) (in Czech).
21.
go back to reference J. Novák, et al., Physical Chemistry for Bachelor and Master Courses (VŠCHT, Praha, 2016) (in Czech). J. Novák, et al., Physical Chemistry for Bachelor and Master Courses (VŠCHT, Praha, 2016) (in Czech).
22.
go back to reference E. L. Furman, A. B. Finkestein, and M. L. Cherny, “Permeability of aluminum foams produced by replication casting”. Metals 3, No. 1, 49–57 (2013). E. L. Furman, A. B. Finkestein, and M. L. Cherny, “Permeability of aluminum foams produced by replication casting”. Metals 3, No. 1, 49–57 (2013).
23.
go back to reference E. L. Furman, A. B. Finkelstein, and M. L. Cherny, “The anisotropy of replicated aluminum foams,” Adv. Mater. Sci. Eng., Article ID 230767, 1–6 (2014 E. L. Furman, A. B. Finkelstein, and M. L. Cherny, “The anisotropy of replicated aluminum foams,” Adv. Mater. Sci. Eng., Article ID 230767, 1–6 (2014
24.
go back to reference E. L. Furman, A. B. Finkelstein, and Y. Yun, “Tensile strength analysis of oxide film on the aluminum melt surface”, in Proceedings of the 11th Russian Conference on Structure and properties of metal and slag melts (South Urals State University, Ekaterinburg, 2004), Vol. 2, pp. 213–215. E. L. Furman, A. B. Finkelstein, and Y. Yun, “Tensile strength analysis of oxide film on the aluminum melt surface”, in Proceedings of the 11th Russian Conference on Structure and properties of metal and slag melts (South Urals State University, Ekaterinburg, 2004), Vol. 2, pp. 213–215.
25.
go back to reference J. F. Despois and A. Mortensen, “Permeability of open-pore microcellular materials,” Acta Mater. 53, No. 5, 1381–1388 (2005). CrossRef J. F. Despois and A. Mortensen, “Permeability of open-pore microcellular materials,” Acta Mater. 53, No. 5, 1381–1388 (2005). CrossRef
26.
go back to reference A. Jinnapat, and A. Kennedy, “The manufacture and characterisation of aluminum foams made by investment casting using dissolvable spherical sodium chloride bead preforms,” Metals 1, No. 1, 49–64 (2011). CrossRef A. Jinnapat, and A. Kennedy, “The manufacture and characterisation of aluminum foams made by investment casting using dissolvable spherical sodium chloride bead preforms,” Metals 1, No. 1, 49–64 (2011). CrossRef
27.
go back to reference J. S. Aronofsky and R. Jenkins, “Unsteady flow of gases through porous media,” in Proceedings of the 1st US National Congress of Applied Mechanics (Illinois Institute of Technology, Chicago, 1952), pp. 763–771. J. S. Aronofsky and R. Jenkins, “Unsteady flow of gases through porous media,” in Proceedings of the 1st US National Congress of Applied Mechanics (Illinois Institute of Technology, Chicago, 1952), pp. 763–771.
28.
go back to reference J. Dinicolantonio, The Salt Fix: Why the Experts got All Wrong – and How Eating More Might Save Your Life, 1st ed (Brno, 2017). J. Dinicolantonio, The Salt Fix: Why the Experts got All Wrong – and How Eating More Might Save Your Life, 1st ed (Brno, 2017).
29.
go back to reference I. Nová, K. Fraňa, J. Sobotka, P. Solfronk, D. Koreček, and I. Nováková, “Production of porous aluminum using sodium chloride,” Manuf. Technol. 19, No. 5, 817–822 (2019). I. Nová, K. Fraňa, J. Sobotka, P. Solfronk, D. Koreček, and I. Nováková, “Production of porous aluminum using sodium chloride,” Manuf. Technol. 19, No. 5, 817–822 (2019).
30.
go back to reference Technical Material EXXENTIS AG (www.exxentis.com). Technical Material EXXENTIS AG (www.exxentis.com).
Metadata
Title
Monitoring of the Interaction of Aluminum Alloy and Sodium Chloride as the Basis for Ecological Production of Expanded Aluminum
Authors
I. Nová
K. Fraňa
T. Lipiňki
Publication date
10-09-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20140124