Skip to main content
Top
Published in: Environmental Earth Sciences 18/2018

01-09-2018 | Thematic Issue

Monitoring topographic changes through 4D-structure-from-motion photogrammetry: application to a debris-flow channel

Authors: Sara Cucchiaro, Marco Cavalli, Damià Vericat, Stefano Crema, Manel Llena, Alberto Beinat, Lorenzo Marchi, Federico Cazorzi

Published in: Environmental Earth Sciences | Issue 18/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The study of fast geomorphic changes in mountain channels and hillslopes, driven by intense geomorphic processes, requires frequent and detailed topographic surveys. In the last two decades, high-resolution topography (HRT) has provided new opportunities in the Earth Sciences. These have benefited from important developments in surveying techniques, methods, sensors, and platforms. Between these, the application of structure-from-motion (SfM) photogrammetry has become a widely used method to acquire HRT and high-resolution orthomosaics at multiple temporal and spatial scales. SfM photogrammetry has revolutionized the possibility to collect multi-temporal HRT in rugged or inaccessible environments like that observed in debris-flow catchments. However, appropriate workflows incorporating survey planning, data acquisition, post-processing, and error and uncertainty assessment are required, especially when multi-temporal surveys are compared to study topographic changes through time. In this paper, we present a workflow to acquire and process HRT. The workflow was applied in a debris-flow channel of the Moscardo Torrent (Eastern Italian Alps). Due to the topographic complexity of the study area, the SfM surveys were carried out integrating photos obtained from an unmanned aerial vehicle and from the ground. This integration guarantees high data density and avoids shadows. Eight photogrammetric surveys were collected between December 2015 and August 2017. In this time interval, five debris flows occurred. The surveying and data processing procedure described in the workflow permitted to summarize and integrate all the analysis steps and helped to identify and minimize potential sources of error in the multi-temporal SfM data (what we consider here 4D). Our case study demonstrates how the developed workflow presented here allows studying the geomorphic effects of debris flows and check dams functionality in mountain environments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bemis SP, Micklethwaite S, Turner D, James MR, Akciz S, Thiele ST, Bangash HA (2014) Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J Struct Geol 69:163–178CrossRef Bemis SP, Micklethwaite S, Turner D, James MR, Akciz S, Thiele ST, Bangash HA (2014) Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J Struct Geol 69:163–178CrossRef
go back to reference Berger C, McArdell B, Schlunegger F (2011) Sediment transfer pattern at Illgraben catchment, Switzerland: implications for the time of debris flow activities. Geomorphology 125:421–432CrossRef Berger C, McArdell B, Schlunegger F (2011) Sediment transfer pattern at Illgraben catchment, Switzerland: implications for the time of debris flow activities. Geomorphology 125:421–432CrossRef
go back to reference Blasone G, Cavalli M, Marchi L, Cazorzi F (2014) Monitoring sediment source areas in a debris-flow catchment using terrestrial laser scanning. Catena 123:23–36CrossRef Blasone G, Cavalli M, Marchi L, Cazorzi F (2014) Monitoring sediment source areas in a debris-flow catchment using terrestrial laser scanning. Catena 123:23–36CrossRef
go back to reference Brasington J, Rumsby BT, McVey RA (2000) Monitoring and modelling morphological change in a braided gravel-bed river using high-resolution GPS-based survey. Earth Surf Process Landf 25:973–990CrossRef Brasington J, Rumsby BT, McVey RA (2000) Monitoring and modelling morphological change in a braided gravel-bed river using high-resolution GPS-based survey. Earth Surf Process Landf 25:973–990CrossRef
go back to reference Brasington J, Langham J, Rumsby B (2003) Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 53:299–316CrossRef Brasington J, Langham J, Rumsby B (2003) Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 53:299–316CrossRef
go back to reference Brasington J, Vericat D, Rychkov I (2012) Modeling riverbed morphology, roughness, and surface sedimentology using high-resolution terrestrial laser scanning. Water Resour Res 48:1–18CrossRef Brasington J, Vericat D, Rychkov I (2012) Modeling riverbed morphology, roughness, and surface sedimentology using high-resolution terrestrial laser scanning. Water Resour Res 48:1–18CrossRef
go back to reference Carrivick JL, Smith MW, Quincey DJ (2016) Structure from motion in the geosciences. New analytical methods in earth and environmental science. Wiley-Blackwell, OxfordCrossRef Carrivick JL, Smith MW, Quincey DJ (2016) Structure from motion in the geosciences. New analytical methods in earth and environmental science. Wiley-Blackwell, OxfordCrossRef
go back to reference Cavalli M, Marchi L (2008) Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Nat Hazards Earth Syst Sci 8:323–333CrossRef Cavalli M, Marchi L (2008) Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Nat Hazards Earth Syst Sci 8:323–333CrossRef
go back to reference Cavalli M, Goldin B, Comiti F, Brardinoni F, Marchi L (2017) Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models. Geomorphology 291:4–16CrossRef Cavalli M, Goldin B, Comiti F, Brardinoni F, Marchi L (2017) Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models. Geomorphology 291:4–16CrossRef
go back to reference Clapuyt F, Vanacker V, Van Oost K (2016) Reproducibility of UAV-based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology 260:4–15CrossRef Clapuyt F, Vanacker V, Van Oost K (2016) Reproducibility of UAV-based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology 260:4–15CrossRef
go back to reference Clapuyt F, Vanacker V, Schlunegger F, Van Oost K (2017) Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models. Earth Surf Dyn 5:791–806CrossRef Clapuyt F, Vanacker V, Schlunegger F, Van Oost K (2017) Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models. Earth Surf Dyn 5:791–806CrossRef
go back to reference Cook KL (2017) An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 278:195–208CrossRef Cook KL (2017) An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 278:195–208CrossRef
go back to reference Cucchiaro S, Cavalli M, Vericat D, Crema S, Llena M, Beinat A, Marchi L, Cazorzi F (2018a) Geomorphic effectiveness of check dams in a debris-flow catchment using multi-temporal topographic surveys. Catena (submitted, under review) Cucchiaro S, Cavalli M, Vericat D, Crema S, Llena M, Beinat A, Marchi L, Cazorzi F (2018a) Geomorphic effectiveness of check dams in a debris-flow catchment using multi-temporal topographic surveys. Catena (submitted, under review)
go back to reference Cucchiaro S, Maset E, Fusiello A, Cazorzi F (2018b) 4D-SfM photogrammetry for monitoring sediment dynamics in a debris-flow catchment: software testing and results comparison. Int Arch Photogramm Remote Sens Spat Inf Sci XLII-2:281–288CrossRef Cucchiaro S, Maset E, Fusiello A, Cazorzi F (2018b) 4D-SfM photogrammetry for monitoring sediment dynamics in a debris-flow catchment: software testing and results comparison. Int Arch Photogramm Remote Sens Spat Inf Sci XLII-2:281–288CrossRef
go back to reference Dietrich JT (2017) Bathymetric Structure-from-motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf Process Landf 42:355–364CrossRef Dietrich JT (2017) Bathymetric Structure-from-motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf Process Landf 42:355–364CrossRef
go back to reference Eker R, Aydın A, Hübl J (2018) Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study. Environ Monit Assess 190:28CrossRef Eker R, Aydın A, Hübl J (2018) Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study. Environ Monit Assess 190:28CrossRef
go back to reference Eltner A, Kaiser A, Castillo C, Rock G, Neugirg F, Abellán A (2016) Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surf Dyn 4:359–389CrossRef Eltner A, Kaiser A, Castillo C, Rock G, Neugirg F, Abellán A (2016) Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surf Dyn 4:359–389CrossRef
go back to reference Fonstad MA, Dietrich JT, Courville BC, Jensen JL, Carbonneau PE (2013) Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf Process Landf 38:421–430CrossRef Fonstad MA, Dietrich JT, Courville BC, Jensen JL, Carbonneau PE (2013) Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf Process Landf 38:421–430CrossRef
go back to reference Glendell M, McShane G, Farrow L, James MR, Quinton J, Anderson K, Evans M, Benaud P, Rawlins B, Morgan D, Jones L, Kirkham M, DeBell L, Quine TA, Lark M, Rickson J, Brazier RE (2017) Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surf Process Landf 42:1860–1871CrossRef Glendell M, McShane G, Farrow L, James MR, Quinton J, Anderson K, Evans M, Benaud P, Rawlins B, Morgan D, Jones L, Kirkham M, DeBell L, Quine TA, Lark M, Rickson J, Brazier RE (2017) Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surf Process Landf 42:1860–1871CrossRef
go back to reference Granshaw SI (1980) Bundle adjustment methods in engineering photogrammetry. Photogramm Rec 10(56):181–207CrossRef Granshaw SI (1980) Bundle adjustment methods in engineering photogrammetry. Photogramm Rec 10(56):181–207CrossRef
go back to reference Gruen A (2012) Development and Status of Image Matching in Photogrammetry. Photogramm Rec 27:36–57CrossRef Gruen A (2012) Development and Status of Image Matching in Photogrammetry. Photogramm Rec 27:36–57CrossRef
go back to reference Heritage GL, Milan DJ, Large ARG, Fuller IC (2009) Influence of survey strategy and interpolation model on DEM quality. Geomorphology 112:334–344CrossRef Heritage GL, Milan DJ, Large ARG, Fuller IC (2009) Influence of survey strategy and interpolation model on DEM quality. Geomorphology 112:334–344CrossRef
go back to reference Immerzeel WW, Kraaijenbrink PDA, Shea JM, Shrestha AB, Pellicciotti F, Bierkens MFP, de Jong SM (2014) High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens Environ 150:93–103CrossRef Immerzeel WW, Kraaijenbrink PDA, Shea JM, Shrestha AB, Pellicciotti F, Bierkens MFP, de Jong SM (2014) High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens Environ 150:93–103CrossRef
go back to reference James MR, Robson S (2012) Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J Geophys Res 117:F03017 James MR, Robson S (2012) Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J Geophys Res 117:F03017
go back to reference James MR, Robson S (2014) Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf Process Landf 39:1413–1420CrossRef James MR, Robson S (2014) Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf Process Landf 39:1413–1420CrossRef
go back to reference James MR, Varley N (2012) Identification of structural controls in an active lava dome with high resolution DEMs: Volcn de Colima, Mexico. Geophys Res Lett 39:1–5CrossRef James MR, Varley N (2012) Identification of structural controls in an active lava dome with high resolution DEMs: Volcn de Colima, Mexico. Geophys Res Lett 39:1–5CrossRef
go back to reference James MR, Robson S, D’Oleire-Oltmanns S, Niethammer U (2017a) Optimising UAV topographic surveys processed with structure from-motion: ground control quality, quantity and bundle adjustment. Geomorphology 280:51–66CrossRef James MR, Robson S, D’Oleire-Oltmanns S, Niethammer U (2017a) Optimising UAV topographic surveys processed with structure from-motion: ground control quality, quantity and bundle adjustment. Geomorphology 280:51–66CrossRef
go back to reference James MR, Robson S, Smith MW (2017b) 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys. Earth Surf Process Landf 42:1769–1788CrossRef James MR, Robson S, Smith MW (2017b) 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys. Earth Surf Process Landf 42:1769–1788CrossRef
go back to reference Javernick L, Brasington J, Caruso B (2014) Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology 213:166–182CrossRef Javernick L, Brasington J, Caruso B (2014) Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology 213:166–182CrossRef
go back to reference Koci J, Jarihani B, Leon JX, Sidle R, Wilkinson S, Bartley R (2017) Assessment of UAV and ground-based structure from motion with multi-view stereo photogrammetry in a gullied savanna catchment. ISPRS Int J Geo Inf 6:328CrossRef Koci J, Jarihani B, Leon JX, Sidle R, Wilkinson S, Bartley R (2017) Assessment of UAV and ground-based structure from motion with multi-view stereo photogrammetry in a gullied savanna catchment. ISPRS Int J Geo Inf 6:328CrossRef
go back to reference Lague D, Brodu N, Leroux J (2013) Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J Photogramm Remote Sens 82:10–26CrossRef Lague D, Brodu N, Leroux J (2013) Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J Photogramm Remote Sens 82:10–26CrossRef
go back to reference Lane SN, Chandler JH (2003) The next generation of high quality topographic data for hydrology and geomorphology: new data sources, new applications and new problems. Earth Surf Process Landf 28:229–230CrossRef Lane SN, Chandler JH (2003) The next generation of high quality topographic data for hydrology and geomorphology: new data sources, new applications and new problems. Earth Surf Process Landf 28:229–230CrossRef
go back to reference Lane SN, Westaway RM, Hicks DM (2003) Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf Process Landf 28:249–271CrossRef Lane SN, Westaway RM, Hicks DM (2003) Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf Process Landf 28:249–271CrossRef
go back to reference Loye A, Jaboyedoff M, Theule J, Liébault F (2016) Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys. Earth Surf Dyn 4:489–513CrossRef Loye A, Jaboyedoff M, Theule J, Liébault F (2016) Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys. Earth Surf Dyn 4:489–513CrossRef
go back to reference Mallalieu J, Carrivick JL, Quincey DJ, Smith MW, James WHM (2017) An integrated Structure-from-Motion and time-lapse technique for quantifying ice-margin dynamics. J Glaciol 63:937–949CrossRef Mallalieu J, Carrivick JL, Quincey DJ, Smith MW, James WHM (2017) An integrated Structure-from-Motion and time-lapse technique for quantifying ice-margin dynamics. J Glaciol 63:937–949CrossRef
go back to reference Mao L, Cavalli M, Comiti F, Marchi L, Lenzi MA, Arattano M (2009) Sediment transfer processes in two Alpine catchments of contrasting morphological settings. J Hydrol 364:88–98CrossRef Mao L, Cavalli M, Comiti F, Marchi L, Lenzi MA, Arattano M (2009) Sediment transfer processes in two Alpine catchments of contrasting morphological settings. J Hydrol 364:88–98CrossRef
go back to reference Marcato G, Mantovani M, Pasuto A, Zabuski L, Borgatti L (2012) Monitoring, numerical modelling and hazard mitigation of the Moscardo landslide (Eastern Italian Alps). Eng Geol Integr Technol Landslide Monit Quant Hazard Assess 128:95–107 Marcato G, Mantovani M, Pasuto A, Zabuski L, Borgatti L (2012) Monitoring, numerical modelling and hazard mitigation of the Moscardo landslide (Eastern Italian Alps). Eng Geol Integr Technol Landslide Monit Quant Hazard Assess 128:95–107
go back to reference Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46:1–17CrossRef Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46:1–17CrossRef
go back to reference Marteau B, Vericat D, Gibbins C, Batalla RJ, Green DR (2017) Application of structure-from-motion photogrammetry to river restoration. Earth Surf Process Landf 42:503–515CrossRef Marteau B, Vericat D, Gibbins C, Batalla RJ, Green DR (2017) Application of structure-from-motion photogrammetry to river restoration. Earth Surf Process Landf 42:503–515CrossRef
go back to reference Micheletti N, Chandler JH, Lane SN (2015a) Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf Process Landf 40:473–486CrossRef Micheletti N, Chandler JH, Lane SN (2015a) Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf Process Landf 40:473–486CrossRef
go back to reference Micheletti N, Chandler JH, Lane SN (2015b) Structure from motion (SfM) photogrammetry. In: Cook SJ, Clarke LE, Nield JM (eds) Geomorphological techniques. British Society for Geomorphology, London, pp 1–12 Micheletti N, Chandler JH, Lane SN (2015b) Structure from motion (SfM) photogrammetry. In: Cook SJ, Clarke LE, Nield JM (eds) Geomorphological techniques. British Society for Geomorphology, London, pp 1–12
go back to reference Milan DJ, Heritage GL, Large ARG, Fuller IC (2011) Filtering spatial error from DEMs: implications for morphological change estimation. Geomorphology 125:160–171CrossRef Milan DJ, Heritage GL, Large ARG, Fuller IC (2011) Filtering spatial error from DEMs: implications for morphological change estimation. Geomorphology 125:160–171CrossRef
go back to reference Mosbrucker AR, Major JJ, Spicer KR, Pitlick J (2017) Camera system considerations for geomorphic applications of SfM photogrammetry. Earth Surf Process Landf 42:969–986CrossRef Mosbrucker AR, Major JJ, Spicer KR, Pitlick J (2017) Camera system considerations for geomorphic applications of SfM photogrammetry. Earth Surf Process Landf 42:969–986CrossRef
go back to reference O’Connor J, Smith MJ, James MR (2017) Cameras and settings for aerial surveys in the geosciences: optimising image data. Progr Phys Geogr Earth Environ 41:325–344CrossRef O’Connor J, Smith MJ, James MR (2017) Cameras and settings for aerial surveys in the geosciences: optimising image data. Progr Phys Geogr Earth Environ 41:325–344CrossRef
go back to reference Passalacqua P, Belmont P, Staley DM, Simley JD, Arrowsmith JR, Bode CA, Crosby C, DeLong SB, Glenn NF, Kelly SA, Lague D, Sangireddy H, Schaffrath K, Tarboton DG, Wasklewicz T, Wheaton JM (2015) Analyzing high-resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review. Earth Sci Rev 148:174–193CrossRef Passalacqua P, Belmont P, Staley DM, Simley JD, Arrowsmith JR, Bode CA, Crosby C, DeLong SB, Glenn NF, Kelly SA, Lague D, Sangireddy H, Schaffrath K, Tarboton DG, Wasklewicz T, Wheaton JM (2015) Analyzing high-resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review. Earth Sci Rev 148:174–193CrossRef
go back to reference Piermattei L, Carturan L, Guarnieri A (2015) Use of terrestrial photogrammetry based on structure-from-motion for mass balance estimation of a small glacier in the Italian Alps. Earth Surf Process Landf 40:1791–1802CrossRef Piermattei L, Carturan L, Guarnieri A (2015) Use of terrestrial photogrammetry based on structure-from-motion for mass balance estimation of a small glacier in the Italian Alps. Earth Surf Process Landf 40:1791–1802CrossRef
go back to reference Piermattei L, Karel W, Vettore A, Pfeifer N (2016) Panorama image sets for terrestrial photogrammetric surveys. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:159CrossRef Piermattei L, Karel W, Vettore A, Pfeifer N (2016) Panorama image sets for terrestrial photogrammetric surveys. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:159CrossRef
go back to reference Schürch P, Densmore AL, Rosser NJ, Lim M, Mcardell BW (2011) Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel. Earth Surf Process Landf 36:1847–1859CrossRef Schürch P, Densmore AL, Rosser NJ, Lim M, Mcardell BW (2011) Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel. Earth Surf Process Landf 36:1847–1859CrossRef
go back to reference Shortis MR, Bellman CJ, Robson S, Johnston GJ, Johnson GW (2006) Stability of zoom and fixed lenses used with digital SLR cameras. Int Arch Photogramm Remote Sensing Spat Inf Sci 36:285–290 Shortis MR, Bellman CJ, Robson S, Johnston GJ, Johnson GW (2006) Stability of zoom and fixed lenses used with digital SLR cameras. Int Arch Photogramm Remote Sensing Spat Inf Sci 36:285–290
go back to reference Smith M, Vericat D (2015) From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surf Process Landf 40:1656–1671CrossRef Smith M, Vericat D (2015) From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surf Process Landf 40:1656–1671CrossRef
go back to reference Smith MW, Carrivick JL, Hooke J, Kirkby MJ (2014) Reconstructing flash flood magnitudes using “structure-from-motion”: a rapid assessment tool. J Hydrol 519:1914–1927CrossRef Smith MW, Carrivick JL, Hooke J, Kirkby MJ (2014) Reconstructing flash flood magnitudes using “structure-from-motion”: a rapid assessment tool. J Hydrol 519:1914–1927CrossRef
go back to reference Smith MW, Carrivick JL, Quincey DJ (2015) Structure from motion photogrammetry in physical geography. Prog Phys Geogr 40:247–275CrossRef Smith MW, Carrivick JL, Quincey DJ (2015) Structure from motion photogrammetry in physical geography. Prog Phys Geogr 40:247–275CrossRef
go back to reference Stöcker C, Eltner A, Karrasch P (2015) Measuring gullies by synergetic application of UAV and close range photogrammetry—a case study from Andalusia, Spain. Catena 132:1–11CrossRef Stöcker C, Eltner A, Karrasch P (2015) Measuring gullies by synergetic application of UAV and close range photogrammetry—a case study from Andalusia, Spain. Catena 132:1–11CrossRef
go back to reference Stumpf A, Malet JP, Allemand P, Pierrot-Deseilligny M, Skupinski G (2015) Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 231:130–145CrossRef Stumpf A, Malet JP, Allemand P, Pierrot-Deseilligny M, Skupinski G (2015) Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 231:130–145CrossRef
go back to reference Tarolli P (2014) High-resolution topography for understanding Earth surface processes: opportunities and challenges. Geomorphology 216:295–312CrossRef Tarolli P (2014) High-resolution topography for understanding Earth surface processes: opportunities and challenges. Geomorphology 216:295–312CrossRef
go back to reference Theule J, Liébault F, Laigle D, Loye A, Jaboyedoff M (2015) Channel scour and fill by debris flows and bedload transport. Geomorphology 243:92–105CrossRef Theule J, Liébault F, Laigle D, Loye A, Jaboyedoff M (2015) Channel scour and fill by debris flows and bedload transport. Geomorphology 243:92–105CrossRef
go back to reference Vericat D, Brasington J, Wheaton J, Cowie M (2009) Accuracy assessment of aerial photographs acquired using lighter-than-air blimps: low-cost tools for mapping river corridors. River Res Appl 28:985–1000CrossRef Vericat D, Brasington J, Wheaton J, Cowie M (2009) Accuracy assessment of aerial photographs acquired using lighter-than-air blimps: low-cost tools for mapping river corridors. River Res Appl 28:985–1000CrossRef
go back to reference Vericat D, Smith M, Brasington J (2014) Patterns of topographic change in sub-humid badlands determined by high-resolution multi-temporal topographic surveys. Catena 120:164–176CrossRef Vericat D, Smith M, Brasington J (2014) Patterns of topographic change in sub-humid badlands determined by high-resolution multi-temporal topographic surveys. Catena 120:164–176CrossRef
go back to reference Vericat D, Wheaton JM, Brasington J (2017) Revisiting the morphological approach: opportunities and challenges with repeat high-resolution topography. In: Tsutsumi D, Laronne JB (eds) Gravel-bed rivers: processes and disasters, 1st edn. Wiley, Oxford, pp 121–158 Vericat D, Wheaton JM, Brasington J (2017) Revisiting the morphological approach: opportunities and challenges with repeat high-resolution topography. In: Tsutsumi D, Laronne JB (eds) Gravel-bed rivers: processes and disasters, 1st edn. Wiley, Oxford, pp 121–158
go back to reference Victoriano A, Brasington J, Guinau M, Furdada G, Cabré M, Moysset M (2018) Geomorphic impact and assessment of flexible barriers using multi-temporal LiDAR data: the Portainé mountain catchment (Pyrenees). Eng Geol 237:168–180CrossRef Victoriano A, Brasington J, Guinau M, Furdada G, Cabré M, Moysset M (2018) Geomorphic impact and assessment of flexible barriers using multi-temporal LiDAR data: the Portainé mountain catchment (Pyrenees). Eng Geol 237:168–180CrossRef
go back to reference Westoby MJ, Brasington J, Glasser NF (2012) ‘Structure-from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314CrossRef Westoby MJ, Brasington J, Glasser NF (2012) ‘Structure-from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314CrossRef
go back to reference Wheaton JM, Brasington J, Darby SE, Sear DA (2010) Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf Process Landf 35:136–156 Wheaton JM, Brasington J, Darby SE, Sear DA (2010) Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf Process Landf 35:136–156
go back to reference Williams JG, Rosser NJ, Hardy RJ, Brain MJ, Afana AA (2018) Optimising 4-D surface change detection: an approach for capturing rockfall magnitude-frequency. Earth Surf Dyn 6:101–119CrossRef Williams JG, Rosser NJ, Hardy RJ, Brain MJ, Afana AA (2018) Optimising 4-D surface change detection: an approach for capturing rockfall magnitude-frequency. Earth Surf Dyn 6:101–119CrossRef
go back to reference Woodget AS, Carbonneau PE, Visser F, Maddock IP (2015) Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surf Process Landf 40:47–64CrossRef Woodget AS, Carbonneau PE, Visser F, Maddock IP (2015) Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surf Process Landf 40:47–64CrossRef
go back to reference Wulder MA, Coops NC (2014) Make Earth observations open access: freely available satellite imagery will improve science and environmental-monitoring products. Nature 513(7516):30CrossRef Wulder MA, Coops NC (2014) Make Earth observations open access: freely available satellite imagery will improve science and environmental-monitoring products. Nature 513(7516):30CrossRef
go back to reference Zhang Z (1992) Iterative point matching for registration of free-form curves. Int J Comput Vis 13:119–152CrossRef Zhang Z (1992) Iterative point matching for registration of free-form curves. Int J Comput Vis 13:119–152CrossRef
Metadata
Title
Monitoring topographic changes through 4D-structure-from-motion photogrammetry: application to a debris-flow channel
Authors
Sara Cucchiaro
Marco Cavalli
Damià Vericat
Stefano Crema
Manel Llena
Alberto Beinat
Lorenzo Marchi
Federico Cazorzi
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 18/2018
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-018-7817-4

Other articles of this Issue 18/2018

Environmental Earth Sciences 18/2018 Go to the issue