Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

04-08-2020 | Issue 11/2020

Water Resources Management 11/2020

Monthly Streamflow Forecasting Using ELM-IPSO Based on Phase Space Reconstruction

Journal:
Water Resources Management > Issue 11/2020
Authors:
Yan Jiang, Xin Bao, Shaonan Hao, Hongtao Zhao, Xuyong Li, Xianing Wu
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

We have developed a hybrid model that integrates chaos theory and an extreme learning machine with optimal parameters selected using an improved particle swarm optimization (ELM-IPSO) for monthly runoff analysis and prediction. Monthly streamflow data covering a period of 55 years from Daiying hydrological station in the Chaohe River basin in northern China were used for the study. The Lyapunov exponent, the correlation dimension method, and the nonlinear prediction method were used to characterize the streamflow data. With the time series of the reconstructed phase space matrix as input variables, an improved particle swarm optimization was used to improve the performance of the extreme learning machine. Finally, the optimal chaotic ensemble learning model for monthly streamflow prediction was obtained. The accuracy of the predictions of the streamflow series (linear correlation coefficient of about 0.89 and efficiency coefficient of about 0.78) indicate the validity of our approach for predicting streamflow dynamics. The developed method had a higher prediction accuracy compared with an auto-regression method, an artificial neural network, an extreme learning machine with genetic algorithm and with PSO algorithm, suggesting that ELM-IPSO is an efficient method for monthly streamflow prediction.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 11/2020

Water Resources Management 11/2020 Go to the issue