Skip to main content
Top

25-11-2024 | Original Paper

More constructions of permutation pentanomials and hexanomials over \(\mathbb {F}_{p^{2m}}\)

Authors: Ruihua Shen, Xianping Liu, Xiaofang Xu

Published in: Applicable Algebra in Engineering, Communication and Computing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, two classes of permutation pentanomials over finite fields \(\mathbb {F}_{p^{2m}}\) are investigated by transforming the permutation property of polynomials to verifying that some low-degree equations has no solutions in the unit circle. Furthermore, based on the study of the algebraic curves for fractional polynomials, several classes of permutation pentanomials and hexanomials over \(\mathbb {F}_{5^{2m}}\) are discovered. Additionally, we obtain some new permutation pentanomials, quadrinomials and octonomials over \(\mathbb {F}_{5^{2m}}\) from known permutation polynomials in the unit circle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alahmadi, A., Alhazmi, H., Helleseth, T., Hijazi, R., Muthana, N., Solé, P.: On the lifted Zetterberg code. Des. Codes Cryptogr. 80(3), 561–576 (2016)MathSciNetCrossRef Alahmadi, A., Alhazmi, H., Helleseth, T., Hijazi, R., Muthana, N., Solé, P.: On the lifted Zetterberg code. Des. Codes Cryptogr. 80(3), 561–576 (2016)MathSciNetCrossRef
2.
go back to reference Akbary, A., Ghioca, D., Wang, Q.: On constructing permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011)MathSciNetCrossRef Akbary, A., Ghioca, D., Wang, Q.: On constructing permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011)MathSciNetCrossRef
3.
go back to reference Bartoli, D., Giulietti, M.: Permutation polynomials, fractional polynomials, and algebraic curves. Finite Fields Appl. 51, 1–16 (2018)MathSciNetCrossRef Bartoli, D., Giulietti, M.: Permutation polynomials, fractional polynomials, and algebraic curves. Finite Fields Appl. 51, 1–16 (2018)MathSciNetCrossRef
4.
go back to reference Berlekamp, E.R., Rumsey, H., Solomon, G.: On the solution of algebraic equations over finite fields. Inf. Control 10(6), 553–564 (1967)MathSciNetCrossRef Berlekamp, E.R., Rumsey, H., Solomon, G.: On the solution of algebraic equations over finite fields. Inf. Control 10(6), 553–564 (1967)MathSciNetCrossRef
5.
go back to reference Chen, C., Kan, H., Peng, J., Zheng, L., Li, Y.: Three classes of permutation quadrinomials in odd characteristic. Cryptogr. Commun. 16, 351–365 (2024)MathSciNetCrossRef Chen, C., Kan, H., Peng, J., Zheng, L., Li, Y.: Three classes of permutation quadrinomials in odd characteristic. Cryptogr. Commun. 16, 351–365 (2024)MathSciNetCrossRef
6.
go back to reference Dodunekov, S.M., Nilsson, J.E.M.: Algebraic decoding of the Zetterberg codes. IEEE Trans. Inf. Theory 38(5), 1570–1573 (1992)MathSciNetCrossRef Dodunekov, S.M., Nilsson, J.E.M.: Algebraic decoding of the Zetterberg codes. IEEE Trans. Inf. Theory 38(5), 1570–1573 (1992)MathSciNetCrossRef
7.
go back to reference Deng, H., Zheng, D.: More classes of permutation trinomials with Niho exponents. Cryptogr. Commun. 11, 227–236 (2019)MathSciNetCrossRef Deng, H., Zheng, D.: More classes of permutation trinomials with Niho exponents. Cryptogr. Commun. 11, 227–236 (2019)MathSciNetCrossRef
8.
go back to reference Gupta, R.: Several new permutation quadrinomials over finite fields of odd characteristic. Des. Codes Cryptogr. 88(1), 223–239 (2020)MathSciNetCrossRef Gupta, R.: Several new permutation quadrinomials over finite fields of odd characteristic. Des. Codes Cryptogr. 88(1), 223–239 (2020)MathSciNetCrossRef
9.
go back to reference Gupta, R.: More results about a class of quadrinomials over finite fields of odd characteristic. Commun. Algebra. 50(1), 324–333 (2022)MathSciNetCrossRef Gupta, R.: More results about a class of quadrinomials over finite fields of odd characteristic. Commun. Algebra. 50(1), 324–333 (2022)MathSciNetCrossRef
10.
11.
go back to reference Jarali, V., Poojary, P., Bhatta, G.R.V.: A recent survey of permutation trinomials over finite fields. AIMS Math. 8(12), 29182–29220 (2023)MathSciNetCrossRef Jarali, V., Poojary, P., Bhatta, G.R.V.: A recent survey of permutation trinomials over finite fields. AIMS Math. 8(12), 29182–29220 (2023)MathSciNetCrossRef
12.
go back to reference Laigle-Chapuy, Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13(1), 58–70 (2007)MathSciNetCrossRef Laigle-Chapuy, Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13(1), 58–70 (2007)MathSciNetCrossRef
13.
go back to reference Liu, Q., Chen, G., Liu, X., Zou, J.: Several classes of permutation pentanomials with the form \(x^{r}h(x^{p^{m}- 1})\) over \(\mathbb{F} _{p^{2m}}\). Finite Fields Appl. 92, 102307 (2023)CrossRef Liu, Q., Chen, G., Liu, X., Zou, J.: Several classes of permutation pentanomials with the form \(x^{r}h(x^{p^{m}- 1})\) over \(\mathbb{F} _{p^{2m}}\). Finite Fields Appl. 92, 102307 (2023)CrossRef
14.
go back to reference Lidl, R., Niederreiter, H.: Finite fields encyclopedia of mathematics and its applications. Cambridge University Press, UK (1997) Lidl, R., Niederreiter, H.: Finite fields encyclopedia of mathematics and its applications. Cambridge University Press, UK (1997)
15.
go back to reference Li, K., Qu, L., Wang, Q.: New constructions of permutation polynomials of the form \(x^{r}h\left(x^{q-1}\right)\) over \(\mathbb{F} _{q^ {2}}\). Des. Codes Cryptogr. 86(10), 2379–2405 (2018)MathSciNetCrossRef Li, K., Qu, L., Wang, Q.: New constructions of permutation polynomials of the form \(x^{r}h\left(x^{q-1}\right)\) over \(\mathbb{F} _{q^ {2}}\). Des. Codes Cryptogr. 86(10), 2379–2405 (2018)MathSciNetCrossRef
16.
go back to reference Li, L., Wang, Q., Xu, Y., Zeng, X.: Several classes of complete permutation polynomials with Niho exponents. Finite Fields Appl. 72, 101831 (2021)MathSciNetCrossRef Li, L., Wang, Q., Xu, Y., Zeng, X.: Several classes of complete permutation polynomials with Niho exponents. Finite Fields Appl. 72, 101831 (2021)MathSciNetCrossRef
17.
go back to reference Li, L., Zeng, X., Cao, X.: Construction of complete permutation polynomials over finite fields. J. Cryptologic Res. 6(5), 675–686 (2019) Li, L., Zeng, X., Cao, X.: Construction of complete permutation polynomials over finite fields. J. Cryptologic Res. 6(5), 675–686 (2019)
18.
go back to reference Park, Y.H., Lee, J.B.: Permutation polynomials and group permutation polynomials. B. Aust. Math. Soc. 63(1), 67–74 (2001)MathSciNetCrossRef Park, Y.H., Lee, J.B.: Permutation polynomials and group permutation polynomials. B. Aust. Math. Soc. 63(1), 67–74 (2001)MathSciNetCrossRef
19.
go back to reference Qin, X., Yan, L.: Constructing permutation trinomials via monomials on the subsets of \(\mu _{q+1}\). Appl. Algebra Eng. Commun. Comput. 34(2), 321–334 (2023)MathSciNetCrossRef Qin, X., Yan, L.: Constructing permutation trinomials via monomials on the subsets of \(\mu _{q+1}\). Appl. Algebra Eng. Commun. Comput. 34(2), 321–334 (2023)MathSciNetCrossRef
20.
go back to reference Schwenk, J., Huber, K.: Public key encryption and digital signatures based on permutation polynomials. Electron. Lett. 34(8), 759–760 (1998)CrossRef Schwenk, J., Huber, K.: Public key encryption and digital signatures based on permutation polynomials. Electron. Lett. 34(8), 759–760 (1998)CrossRef
21.
go back to reference Sharma, R.K., Gupta, R.: Determination of a type of permutation binomials and trinomials. Appl. Algebra Eng. Commun. Comput. 31(1), 65–86 (2020)MathSciNetCrossRef Sharma, R.K., Gupta, R.: Determination of a type of permutation binomials and trinomials. Appl. Algebra Eng. Commun. Comput. 31(1), 65–86 (2020)MathSciNetCrossRef
22.
go back to reference Tu, Z., Liu, X., Zeng, X.: A revisit to a class of permutation quadrinomials. Finite Fields Appl. 59, 57–85 (2019)MathSciNetCrossRef Tu, Z., Liu, X., Zeng, X.: A revisit to a class of permutation quadrinomials. Finite Fields Appl. 59, 57–85 (2019)MathSciNetCrossRef
23.
go back to reference Tu, Z., Zeng, X., Hu, L.: Several classes of complete permutation polynomials. Finite Fields Appl. 25, 182–193 (2014)MathSciNetCrossRef Tu, Z., Zeng, X., Hu, L.: Several classes of complete permutation polynomials. Finite Fields Appl. 25, 182–193 (2014)MathSciNetCrossRef
24.
25.
go back to reference Wu, D., Yuan, P., Ding, C., Ma, Y.: Permutation trinomials over \(\mathbb{F} _{2^ {m}}\). Finite Fields Appl. 46, 38–56 (2017)MathSciNetCrossRef Wu, D., Yuan, P., Ding, C., Ma, Y.: Permutation trinomials over \(\mathbb{F} _{2^ {m}}\). Finite Fields Appl. 46, 38–56 (2017)MathSciNetCrossRef
26.
go back to reference Williams, K.S.: Note on cubics over \(\mathbb{G}\mathbb{F} (2^{n})\) and \(\mathbb{G}\mathbb{F} (3^{n})\). J. Number Theory 7(4), 361–365 (1975)MathSciNetCrossRef Williams, K.S.: Note on cubics over \(\mathbb{G}\mathbb{F} (2^{n})\) and \(\mathbb{G}\mathbb{F} (3^{n})\). J. Number Theory 7(4), 361–365 (1975)MathSciNetCrossRef
27.
go back to reference Xu, G., Cao, X., Ping, J.: Some permutation pentanomials over finite fields with even characteristic. Finite Fields Appl. 49, 212–226 (2018)MathSciNetCrossRef Xu, G., Cao, X., Ping, J.: Some permutation pentanomials over finite fields with even characteristic. Finite Fields Appl. 49, 212–226 (2018)MathSciNetCrossRef
28.
go back to reference Zieve, M.E.: Some families of permutation polynomials over finite fields. Int. J. Number Theory 4(5), 851–857 (2008)MathSciNetCrossRef Zieve, M.E.: Some families of permutation polynomials over finite fields. Int. J. Number Theory 4(5), 851–857 (2008)MathSciNetCrossRef
29.
go back to reference Zha, Z., Hu, L., Fan, S.: Further results on permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 45, 43–52 (2017)MathSciNetCrossRef Zha, Z., Hu, L., Fan, S.: Further results on permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 45, 43–52 (2017)MathSciNetCrossRef
30.
go back to reference Zhang, T., Zheng, L., Hao, X.: More classes of permutation hexanomials and pentanomials over finite fields with even characteristic. Finite Fields Appl. 91, 102250 (2023)MathSciNetCrossRef Zhang, T., Zheng, L., Hao, X.: More classes of permutation hexanomials and pentanomials over finite fields with even characteristic. Finite Fields Appl. 91, 102250 (2023)MathSciNetCrossRef
Metadata
Title
More constructions of permutation pentanomials and hexanomials over
Authors
Ruihua Shen
Xianping Liu
Xiaofang Xu
Publication date
25-11-2024
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00673-3

Premium Partner