Skip to main content
Top
Published in: Cellulose 6/2010

01-12-2010

Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers

Authors: Gilberto Siqueira, Sandra Tapin-Lingua, Julien Bras, Denilson da Silva Perez, Alain Dufresne

Published in: Cellulose | Issue 6/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The goal of this work was to prepare cellulosic nanoparticles using different processing routes, viz. a combination of mechanical shearing, acid and enzymatic hydrolysis. It was shown that the enzymatic hydrolysis pretreatment of bleached sisal pulp helps the preparation of well individualized rod-like nanocrystals. The morphology of cellulose fibers and nanoparticles was determined by scanning and transmission electron microscopies, respectively. The main outcome of this study indicated the usefulness of the enzymatic treatment for cellulose nanocrystals production. The enzymatic treatment allowed production of a broad range of cellulosic nanoparticles. This investigation proved that the distinction between MFC and whiskers to describe such cellulose nanoparticles is not sufficient. Indeed, it appears essential to indicate the pretreatment performed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRef Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRef
go back to reference Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17:21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17:21–27CrossRef
go back to reference Azizi Samir MAS, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316CrossRef Azizi Samir MAS, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316CrossRef
go back to reference Azizi Samir MAS, Alloin F, Dufresne A (2005) A review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef Azizi Samir MAS, Alloin F, Dufresne A (2005) A review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef
go back to reference Bai W, Holbery J, Kaichang L (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16:455–465CrossRef Bai W, Holbery J, Kaichang L (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16:455–465CrossRef
go back to reference Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157CrossRef Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157CrossRef
go back to reference Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modelling cellulose kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848CrossRef Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modelling cellulose kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848CrossRef
go back to reference Beck-Candanedo S, Roman M, Gray D (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRef Beck-Candanedo S, Roman M, Gray D (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRef
go back to reference Bendahou A, Habibi Y, Kaddami H, Dufresne A (2009) Physico-chemical characterization of palm from Phoenix Dactylifera–L, preparation of cellulose whiskers and natural rubber–based nanocomposites. J Biobas Mater Bioenerg 3:81–90CrossRef Bendahou A, Habibi Y, Kaddami H, Dufresne A (2009) Physico-chemical characterization of palm from Phoenix Dactylifera–L, preparation of cellulose whiskers and natural rubber–based nanocomposites. J Biobas Mater Bioenerg 3:81–90CrossRef
go back to reference Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620CrossRef Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620CrossRef
go back to reference Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180CrossRef
go back to reference Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRef Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRef
go back to reference Eriksson T, Karlsson J, Tjerneld F (2002) A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endogluganase I (Cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 101:41–60CrossRef Eriksson T, Karlsson J, Tjerneld F (2002) A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endogluganase I (Cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 101:41–60CrossRef
go back to reference Garcia O, Torres AL, Colom JF, Pastor FIJ, Diaz P, Vidal T (2002) Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose 9:115–125CrossRef Garcia O, Torres AL, Colom JF, Pastor FIJ, Diaz P, Vidal T (2002) Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose 9:115–125CrossRef
go back to reference Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring opening polymerization. J Mater Chem 18:5002–5010CrossRef Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring opening polymerization. J Mater Chem 18:5002–5010CrossRef
go back to reference Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionnalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRef Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionnalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRef
go back to reference Hayashi N, Sugiyama J, Okano T, Ishihara M (1998) The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type. Carbohydr Res 305:261–269CrossRef Hayashi N, Sugiyama J, Okano T, Ishihara M (1998) The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type. Carbohydr Res 305:261–269CrossRef
go back to reference Helbert W, Cavaillé JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611CrossRef Helbert W, Cavaillé JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611CrossRef
go back to reference Henriksson M (2008). Cellulose nanofibril networks and composites. PhD Thesis, KTH Chemical Science and Engineering, Stockholm, Sweden, p 51 Henriksson M (2008). Cellulose nanofibril networks and composites. PhD Thesis, KTH Chemical Science and Engineering, Stockholm, Sweden, p 51
go back to reference Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef
go back to reference Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1:169–196CrossRef Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1:169–196CrossRef
go back to reference Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813 Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813
go back to reference Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980
go back to reference Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRef
go back to reference Kenealy WR, Jeffries TW (2003) Enzyme processes for pulp and paper: a review of recent developments. In: Barry G, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation: advances in our changing world. Oxford University Press, Washington, pp 210–239CrossRef Kenealy WR, Jeffries TW (2003) Enzyme processes for pulp and paper: a review of recent developments. In: Barry G, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation: advances in our changing world. Oxford University Press, Washington, pp 210–239CrossRef
go back to reference Liu H, Fu SY, Zhu JY, Li H, Zhan HY (2009) Vizualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme Microb Technol 45:274–281CrossRef Liu H, Fu SY, Zhu JY, Li H, Zhan HY (2009) Vizualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme Microb Technol 45:274–281CrossRef
go back to reference Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296CrossRef Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296CrossRef
go back to reference Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRef Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRef
go back to reference Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286CrossRef Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286CrossRef
go back to reference Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A-Mater Sci Process 78:547–552CrossRef Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A-Mater Sci Process 78:547–552CrossRef
go back to reference Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78:39–48CrossRef Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78:39–48CrossRef
go back to reference Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogeneization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogeneization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
go back to reference Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650CrossRef Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650CrossRef
go back to reference Rånby BG, Ribi E (1950) Über den feinbau des zellulose. Experientia 6:12–14CrossRef Rånby BG, Ribi E (1950) Über den feinbau des zellulose. Experientia 6:12–14CrossRef
go back to reference Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef
go back to reference Shin Y, Bae IT, Arey BW, Exarhos GJ (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112:4844–4848CrossRef Shin Y, Bae IT, Arey BW, Exarhos GJ (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112:4844–4848CrossRef
go back to reference Sihtola H, Kyrylund B, Laamanen L, Palenius I (1963) Comaprison and conversion of viscosity and DP-values determined by different methods. Paper Timber 4:225–227 and 229–232 Sihtola H, Kyrylund B, Laamanen L, Palenius I (1963) Comaprison and conversion of viscosity and DP-values determined by different methods. Paper Timber 4:225–227 and 229–232
go back to reference Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers vs. microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers vs. microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef
go back to reference Spiridon I, Popa VI (2000) Application of microorganisms and enzymes in the pulp and paper industry. Cellul Chem Technol 34:275–285 Spiridon I, Popa VI (2000) Application of microorganisms and enzymes in the pulp and paper industry. Cellul Chem Technol 34:275–285
go back to reference Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRef Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRef
go back to reference Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526CrossRef Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526CrossRef
go back to reference Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827
go back to reference van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8:1353–1357CrossRef van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8:1353–1357CrossRef
go back to reference Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng/Biotechnol 108:121–145CrossRef Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng/Biotechnol 108:121–145CrossRef
go back to reference Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRef Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRef
go back to reference Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mat 6:754–761CrossRef Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mat 6:754–761CrossRef
Metadata
Title
Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers
Authors
Gilberto Siqueira
Sandra Tapin-Lingua
Julien Bras
Denilson da Silva Perez
Alain Dufresne
Publication date
01-12-2010
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2010
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-010-9449-z

Other articles of this Issue 6/2010

Cellulose 6/2010 Go to the issue