Skip to main content
Top
Published in: Cellulose 11/2019

24-06-2019 | Original Research

Morphological, physico-chemical, and thermal properties of cellulose nanowhiskers from roselle fibers

Authors: Lau Kia Kian, Mohammad Jawaid, Hidayah Ariffin, Zoheb Karim, M. T. H. Sultan

Published in: Cellulose | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In present study, cellulose nanowhiskers (CNWs) were isolated from roselle fibers by employing low-medium amplitudes of ultrasonication. In a range of low-to-moderate amplitudes of ultrasound, 20%, 30% and 40% amplitudes were applied during ultrasonication treatment to produce CNW-I, CNW-II and CNW-III particles, respectively. The morphological (TEM, FESEM, and AFM), physicochemical (FTIR, EDS, DLS, and XRD) and thermal properties (TGA and DSC) of produced CNWs were conducted to understand the effect of applied amplitudes on CNWs properties. It is clear from the FTIR spectra that increasing ultrasonic amplitudes enhanced crystalline of CNWs. In TEM analysis, CNWs sonicated with 30% and 40% amplitudes possessed the shape of elongated rod-like nanoparticles. FESEM and AFM micrographs exhibited varying whisker-like nanostructures. Additionally, both CNW-II and CNW-III showed stable aqueous colloidal suspensions with zeta potential values more than − 25 mV in response to high sulfur content. As for XRD evaluation, CNW-III exhibited the higher crystallinity degree of 79.9% amongst the all samples. Based on thermal analysis, CNW-I and CNW-II possessed high heat resistant capability at elevated temperature. These CNWs are potential reinforcements in nanocomposites for diverse applications in packaging, engineering, composites and biomedical fields.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Azrina ZAZ, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam AKMM (2017) Spherical nanocrystalline cellulose (NCC) from oil palm empty fruitbunch pulp via ultrasound assisted hydrolysis. Carbohydr Polym 162:115–120CrossRef Azrina ZAZ, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam AKMM (2017) Spherical nanocrystalline cellulose (NCC) from oil palm empty fruitbunch pulp via ultrasound assisted hydrolysis. Carbohydr Polym 162:115–120CrossRef
go back to reference Bandera DD, Carvajal AV, García OD, Salazar BQ, Lopez AD (2015) Assessing release kinetics and dissolution of spray-dried Roselle (Hibiscus sabdariffa L.) extract encapsulated with different carrier agents. LWT Food Sci Technol 64:693–698CrossRef Bandera DD, Carvajal AV, García OD, Salazar BQ, Lopez AD (2015) Assessing release kinetics and dissolution of spray-dried Roselle (Hibiscus sabdariffa L.) extract encapsulated with different carrier agents. LWT Food Sci Technol 64:693–698CrossRef
go back to reference Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157:1041–1049CrossRefPubMed Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157:1041–1049CrossRefPubMed
go back to reference Borsoi C, Zattera AJ, Ferreira CA (2016) Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings. Appl Surf Sci 364:124–132CrossRef Borsoi C, Zattera AJ, Ferreira CA (2016) Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings. Appl Surf Sci 364:124–132CrossRef
go back to reference Campos AD, Neto ARDS, Rodrigues VB, Luchesi BR, Moreira FKV, Correa AC, Mattoso LHC, Marconcini JM (2017) Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydr Polym 175:330–336CrossRefPubMed Campos AD, Neto ARDS, Rodrigues VB, Luchesi BR, Moreira FKV, Correa AC, Mattoso LHC, Marconcini JM (2017) Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydr Polym 175:330–336CrossRefPubMed
go back to reference Chandramohan D, Marimuthu K (2011) Characterization of natural fibers and their application in bone grafting substitutes. Acta Bioeng Biomech 13(1):77–84PubMed Chandramohan D, Marimuthu K (2011) Characterization of natural fibers and their application in bone grafting substitutes. Acta Bioeng Biomech 13(1):77–84PubMed
go back to reference Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352CrossRef Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352CrossRef
go back to reference Espadin A, Dios LTD, Ruvalcaba E, Garcia JV, Velasquillo C, Jaimes IB, Torres HV, Gimeno M, Shirai K (2018) Production and characterization of a nanocomposite of highly crystalline nanowhiskers from biologically extracted chitin in enzymatic poly(ε-caprolactone). Carbohydr Polym 181:684–692CrossRefPubMed Espadin A, Dios LTD, Ruvalcaba E, Garcia JV, Velasquillo C, Jaimes IB, Torres HV, Gimeno M, Shirai K (2018) Production and characterization of a nanocomposite of highly crystalline nanowhiskers from biologically extracted chitin in enzymatic poly(ε-caprolactone). Carbohydr Polym 181:684–692CrossRefPubMed
go back to reference Fallahi HR, Ramazani SHR, Ghorbany M, Shajari MA (2017) Path and factor analysis of roselle (Hibiscus sabdariffa L.) performance. J Appl Res Med Aromat Plants 6:119–125 Fallahi HR, Ramazani SHR, Ghorbany M, Shajari MA (2017) Path and factor analysis of roselle (Hibiscus sabdariffa L.) performance. J Appl Res Med Aromat Plants 6:119–125
go back to reference Fan Y, Fukuzumi H, Saito T, Isogai A (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50:69–76CrossRefPubMed Fan Y, Fukuzumi H, Saito T, Isogai A (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50:69–76CrossRefPubMed
go back to reference Fragal EH, Cellet TSP, Fragal VH, Companhoni MVP, Ueda-Nakamura T, Muniz EC, Silva R, Rubira AF (2016) Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers. Carbohydr Polym 152:734–746CrossRefPubMed Fragal EH, Cellet TSP, Fragal VH, Companhoni MVP, Ueda-Nakamura T, Muniz EC, Silva R, Rubira AF (2016) Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers. Carbohydr Polym 152:734–746CrossRefPubMed
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588CrossRef
go back to reference Garavand A, Tehrani AD (2016) New organic-inorganic hybrid material based on functional cellulose nanowhisker, polypseudorotaxane and Au nanorods. Carbohydr Polym 152:196–206CrossRefPubMed Garavand A, Tehrani AD (2016) New organic-inorganic hybrid material based on functional cellulose nanowhisker, polypseudorotaxane and Au nanorods. Carbohydr Polym 152:196–206CrossRefPubMed
go back to reference Goff KJL, Gaillard C, Helbert W, Garnier C, Aubry T (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116:117–123CrossRefPubMed Goff KJL, Gaillard C, Helbert W, Garnier C, Aubry T (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116:117–123CrossRefPubMed
go back to reference Gu J, Hu C, Zhong R, Tu D, Yun H, Zhang W, Leu S (2017) Isolation of cellulose nanocrystals from medium density fiberboards. Carbohydr Polym 167:70–78CrossRefPubMed Gu J, Hu C, Zhong R, Tu D, Yun H, Zhang W, Leu S (2017) Isolation of cellulose nanocrystals from medium density fiberboards. Carbohydr Polym 167:70–78CrossRefPubMed
go back to reference Guo J, Guo X, Wang S, Yin Y (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr Polym 135:248–255CrossRefPubMed Guo J, Guo X, Wang S, Yin Y (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr Polym 135:248–255CrossRefPubMed
go back to reference Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr Polym 103:119–125CrossRefPubMed Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr Polym 103:119–125CrossRefPubMed
go back to reference Herrera MA, Mathew AP, Oksman K (2012) Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Mater Lett 71:28–31CrossRef Herrera MA, Mathew AP, Oksman K (2012) Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Mater Lett 71:28–31CrossRef
go back to reference Huq T, Salmieri S, Khan A, Khan RA, Tiena CL, Riedl B (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763CrossRefPubMed Huq T, Salmieri S, Khan A, Khan RA, Tiena CL, Riedl B (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763CrossRefPubMed
go back to reference Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459CrossRef Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459CrossRef
go back to reference Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40CrossRefPubMed Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40CrossRefPubMed
go back to reference Jonoobi M, Khazaeian A, Md Tahir P, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095CrossRef Jonoobi M, Khazaeian A, Md Tahir P, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095CrossRef
go back to reference Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polym 132:368–393CrossRef Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polym 132:368–393CrossRef
go back to reference Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676CrossRefPubMed Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676CrossRefPubMed
go back to reference Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428CrossRef Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428CrossRef
go back to reference Kian LK, Jawaid M, Hidayah A, Alothman OY (2017) Isolation and characterization of microcrystalline cellulose from roselle fibers. Int J Biol Macromol 103:931–940CrossRefPubMed Kian LK, Jawaid M, Hidayah A, Alothman OY (2017) Isolation and characterization of microcrystalline cellulose from roselle fibers. Int J Biol Macromol 103:931–940CrossRefPubMed
go back to reference Kian LK, Jawaid M, Hidayah A, Karim Z (2018) Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int J Biol Macromol 114:54–63CrossRefPubMed Kian LK, Jawaid M, Hidayah A, Karim Z (2018) Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int J Biol Macromol 114:54–63CrossRefPubMed
go back to reference Kim DH, Song YS (2015) Rheological behavior of cellulose nanowhisker suspension under magnetic field. Carbohydr Polym 126:240–247CrossRefPubMed Kim DH, Song YS (2015) Rheological behavior of cellulose nanowhisker suspension under magnetic field. Carbohydr Polym 126:240–247CrossRefPubMed
go back to reference Kumari S, Chauhan GS, Ahn JH (2016) Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem Eng J 304:728–736CrossRef Kumari S, Chauhan GS, Ahn JH (2016) Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem Eng J 304:728–736CrossRef
go back to reference Liu D, Dong Y, Bhattacharyya D, Sui G (2017) Novel sandwiched structures in starch/cellulose nanowhiskers (CNWs) composite films. Compos Commun 4:5–9CrossRef Liu D, Dong Y, Bhattacharyya D, Sui G (2017) Novel sandwiched structures in starch/cellulose nanowhiskers (CNWs) composite films. Compos Commun 4:5–9CrossRef
go back to reference Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299CrossRef Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299CrossRef
go back to reference Mondal S (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 163:301–316CrossRefPubMed Mondal S (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 163:301–316CrossRefPubMed
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941CrossRefPubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941CrossRefPubMed
go back to reference Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef
go back to reference Nuruddin M, Chowdhury A, Haque SA, Rahman M, Farhad SF, Jahan MS (2011) Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cell Chem Technol 45:347–354 Nuruddin M, Chowdhury A, Haque SA, Rahman M, Farhad SF, Jahan MS (2011) Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative. Cell Chem Technol 45:347–354
go back to reference Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenerg 35:146–152CrossRef Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenerg 35:146–152CrossRef
go back to reference Oun AA, Rhim JW (2017) Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-basednanocomposite film. Carbohydr Polym 169:467–479CrossRefPubMed Oun AA, Rhim JW (2017) Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-basednanocomposite film. Carbohydr Polym 169:467–479CrossRefPubMed
go back to reference Parsamanesh M, Tehrani AD (2016) Synthesize of new fluorescent polymeric nanoparticle using modified cellulose nanowhisker through click reaction. Carbohydr Polym 136:1323–1331CrossRefPubMed Parsamanesh M, Tehrani AD (2016) Synthesize of new fluorescent polymeric nanoparticle using modified cellulose nanowhisker through click reaction. Carbohydr Polym 136:1323–1331CrossRefPubMed
go back to reference Pereira AGB, Muniz EC, Hsieh YL (2014) Chitosan-sheath and chitin-core nanowhiskers. Carbohydr Polym 107:158–166CrossRefPubMed Pereira AGB, Muniz EC, Hsieh YL (2014) Chitosan-sheath and chitin-core nanowhiskers. Carbohydr Polym 107:158–166CrossRefPubMed
go back to reference Pullawan T, Wilkinson AN, Zhang LN, Eichhorn SJ (2014) Deformation micromechanics of all-cellulose nanocomposites: comparing matrix and reinforcing components. Carbohydr Polym 100:31–39CrossRefPubMed Pullawan T, Wilkinson AN, Zhang LN, Eichhorn SJ (2014) Deformation micromechanics of all-cellulose nanocomposites: comparing matrix and reinforcing components. Carbohydr Polym 100:31–39CrossRefPubMed
go back to reference Qian S, Sheng K (2017) PLA toughened by bamboo cellulose nanowhiskers: role of silane compatibilization on the PLA bionanocomposite properties. Compos Sci Technol 148:59–69CrossRef Qian S, Sheng K (2017) PLA toughened by bamboo cellulose nanowhiskers: role of silane compatibilization on the PLA bionanocomposite properties. Compos Sci Technol 148:59–69CrossRef
go back to reference Qian S, Zhang H, Yao W, Sheng K (2018) Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Compos Part B 133:203–209CrossRef Qian S, Zhang H, Yao W, Sheng K (2018) Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Compos Part B 133:203–209CrossRef
go back to reference Razali N, Sapuan SM, Jawaid M, Ishak MR, Yusriah L (2015) A study on chemical composition, physical, tensile, morphological, and thermal properties roselle fibre: effect of fibre maturity. BioResources 10(1):1803–1824CrossRef Razali N, Sapuan SM, Jawaid M, Ishak MR, Yusriah L (2015) A study on chemical composition, physical, tensile, morphological, and thermal properties roselle fibre: effect of fibre maturity. BioResources 10(1):1803–1824CrossRef
go back to reference Saini S, Belgacem MN, Salon MCB, Bras J (2016) Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose 23(1):795–810CrossRef Saini S, Belgacem MN, Salon MCB, Bras J (2016) Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose 23(1):795–810CrossRef
go back to reference Santos FAD, Iulianelli GCV, Tavares MIB (2017) Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix. Polym Test 61:280–288CrossRef Santos FAD, Iulianelli GCV, Tavares MIB (2017) Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix. Polym Test 61:280–288CrossRef
go back to reference Shahrousvand E, Shahrousvand M, Ghollasi M, Seyedjafari E, Jouibari IS, Babaei A, Salimi A (2017) Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydr Polym 171:281–291CrossRefPubMed Shahrousvand E, Shahrousvand M, Ghollasi M, Seyedjafari E, Jouibari IS, Babaei A, Salimi A (2017) Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydr Polym 171:281–291CrossRefPubMed
go back to reference Sharma HK, Sarkar M, Choudhary SB, Kumar AA, Maruthi RT, Mitra J, Karmakar PG (2016) Diversity analysis based on agro-morphological traits and microsatellite based markers in global germplasm collections of roselle (Hibiscus sabdariffa L.). Ind Crops Prod 89:303–315CrossRef Sharma HK, Sarkar M, Choudhary SB, Kumar AA, Maruthi RT, Mitra J, Karmakar PG (2016) Diversity analysis based on agro-morphological traits and microsatellite based markers in global germplasm collections of roselle (Hibiscus sabdariffa L.). Ind Crops Prod 89:303–315CrossRef
go back to reference Shuangyan Z, Chuangui W (2017) A new type of nanocomposite based on bamboo parenchymal cells. Forest Prod J 67(3):283–287CrossRef Shuangyan Z, Chuangui W (2017) A new type of nanocomposite based on bamboo parenchymal cells. Forest Prod J 67(3):283–287CrossRef
go back to reference Simmons BA, Loque D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. J Curr Opin Plant Biol 13:313–320 Simmons BA, Loque D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. J Curr Opin Plant Biol 13:313–320
go back to reference Sonia A, Dasan KP (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674CrossRefPubMed Sonia A, Dasan KP (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674CrossRefPubMed
go back to reference Sulistyani H, Fujita M, Miyakawa H, Nakazawa F (2016) Effect of roselle calyx extract on in vitro viability and biofilm formation ability of oral pathogenic bacteria. Asian Pac J Trop Med 9(2):119–124CrossRefPubMed Sulistyani H, Fujita M, Miyakawa H, Nakazawa F (2016) Effect of roselle calyx extract on in vitro viability and biofilm formation ability of oral pathogenic bacteria. Asian Pac J Trop Med 9(2):119–124CrossRefPubMed
go back to reference Tehrani AD, Basiryan A (2015) Dendronization of cellulose nanowhisker with cationic hyperbranched dendritic polyamidoamine. Carbohydr Polym 120:46–52CrossRefPubMed Tehrani AD, Basiryan A (2015) Dendronization of cellulose nanowhisker with cationic hyperbranched dendritic polyamidoamine. Carbohydr Polym 120:46–52CrossRefPubMed
go back to reference Ten E, Jiang L, Wolcott MP (2013) Preparation and properties of aligned poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 92:206–213CrossRefPubMed Ten E, Jiang L, Wolcott MP (2013) Preparation and properties of aligned poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 92:206–213CrossRefPubMed
go back to reference Vasconcelos NF, Feitosa JPA, Gama FMP, Morais JPS, Andrade FK, Filho MSMS, Rosa MF (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr Polym 155:425–431CrossRefPubMed Vasconcelos NF, Feitosa JPA, Gama FMP, Morais JPS, Andrade FK, Filho MSMS, Rosa MF (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr Polym 155:425–431CrossRefPubMed
go back to reference Wang LF, Shankar S, Rhim JW (2017) Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocoll 63:201–208CrossRef Wang LF, Shankar S, Rhim JW (2017) Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocoll 63:201–208CrossRef
go back to reference Wu GM, Liu D, Liu GF, Chen J, Huo SP, Kong ZW (2015) Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydr Polym 127:229–235CrossRefPubMed Wu GM, Liu D, Liu GF, Chen J, Huo SP, Kong ZW (2015) Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydr Polym 127:229–235CrossRefPubMed
go back to reference Ye D, Yang J (2015) Ion-responsive liquid crystals of cellulose nanowhiskers grafted with acrylamide. Carbohydr Polym 134:458–466CrossRefPubMed Ye D, Yang J (2015) Ion-responsive liquid crystals of cellulose nanowhiskers grafted with acrylamide. Carbohydr Polym 134:458–466CrossRefPubMed
Metadata
Title
Morphological, physico-chemical, and thermal properties of cellulose nanowhiskers from roselle fibers
Authors
Lau Kia Kian
Mohammad Jawaid
Hidayah Ariffin
Zoheb Karim
M. T. H. Sultan
Publication date
24-06-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 11/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02543-5

Other articles of this Issue 11/2019

Cellulose 11/2019 Go to the issue