Skip to main content
Top
Published in:

15-09-2022

Most Probable Paths for Anisotropic Brownian Motions on Manifolds

Authors: Erlend Grong, Stefan Sommer

Published in: Foundations of Computational Mathematics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Brownian motion on manifolds with non-trivial diffusion coefficient can be constructed by stochastic development of Euclidean Brownian motions using the fiber bundle of linear frames. We provide a comprehensive study of paths for such processes that are most probable in the sense of Onsager–Machlup, however with path probability measured on the driving Euclidean processes. We obtain both a full characterization of the resulting family of most probable paths, reduced equation systems for the path dynamics where the effect of curvature is directly identifiable, and explicit equations in special cases, including constant curvature surfaces where the coupling between curvature and covariance can be explicitly identified in the dynamics. We show how the resulting systems can be integrated numerically and use this to provide examples of most probable paths on different geometries and new algorithms for estimation of mean and infinitesimal covariance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: Composable transformations of Python+NumPy programs, 2018. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: Composable transformations of Python+NumPy programs, 2018.
3.
go back to reference M. Frechet. Les éléments aléatoires de nature quelconque dans un espace distancie. Ann. Inst. H. Poincaré, 10:215–310, 1948.MathSciNet M. Frechet. Les éléments aléatoires de nature quelconque dans un espace distancie. Ann. Inst. H. Poincaré, 10:215–310, 1948.MathSciNet
4.
go back to reference T. Fujita and S.-i. Kotani. The Onsager-Machlup function for diffusion processes. Journal of Mathematics of Kyoto University, 22(1):115–130, 1982.MathSciNet T. Fujita and S.-i. Kotani. The Onsager-Machlup function for diffusion processes. Journal of Mathematics of Kyoto University, 22(1):115–130, 1982.MathSciNet
5.
6.
go back to reference P. Hansen, B. Eltzner, and S. Sommer. Diffusion Means and Heat Kernel on Manifolds. Geometric Science of Information 2021, Feb. 2021. P. Hansen, B. Eltzner, and S. Sommer. Diffusion Means and Heat Kernel on Manifolds. Geometric Science of Information 2021, Feb. 2021.
8.
go back to reference E. P. Hsu. Stochastic analysis on manifolds, volume 38 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002. E. P. Hsu. Stochastic analysis on manifolds, volume 38 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
9.
go back to reference P. Malliavin. Stochastic calculus of variation and hypoelliptic operators. In Proceedings, International Symposium on SDE, Kyoto, 1976. P. Malliavin. Stochastic calculus of variation and hypoelliptic operators. In Proceedings, International Symposium on SDE, Kyoto, 1976.
10.
go back to reference R. Montgomery. A tour of subriemannian geometries, their geodesics and applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002. R. Montgomery. A tour of subriemannian geometries, their geodesics and applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.
11.
go back to reference X. Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. J. Math. Imaging Vis., 25(1):127–154, 2006.MathSciNetCrossRef X. Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. J. Math. Imaging Vis., 25(1):127–154, 2006.MathSciNetCrossRef
12.
go back to reference R. W. Sharpe. Differential geometry, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. Cartan’s generalization of Klein’s Erlangen program, With a foreword by S. S. Chern. R. W. Sharpe. Differential geometry, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. Cartan’s generalization of Klein’s Erlangen program, With a foreword by S. S. Chern.
14.
go back to reference S. Sommer. Anisotropic Distributions on Manifolds: Template Estimation and Most Probable Paths. In Information Processing in Medical Imaging, volume 9123 of Lecture Notes in Computer Science, pages 193–204. Springer, 2015. S. Sommer. Anisotropic Distributions on Manifolds: Template Estimation and Most Probable Paths. In Information Processing in Medical Imaging, volume 9123 of Lecture Notes in Computer Science, pages 193–204. Springer, 2015.
15.
go back to reference S. Sommer. Evolution Equations with Anisotropic Distributions and Diffusion PCA. In F. Nielsen and F. Barbaresco, editors, Geometric Science of Information, number 9389 in Lecture Notes in Computer Science, pages 3–11. Springer International Publishing, 2015. S. Sommer. Evolution Equations with Anisotropic Distributions and Diffusion PCA. In F. Nielsen and F. Barbaresco, editors, Geometric Science of Information, number 9389 in Lecture Notes in Computer Science, pages 3–11. Springer International Publishing, 2015.
16.
17.
go back to reference S. Sommer. An Infinitesimal Probabilistic Model for Principal Component Analysis of Manifold Valued Data. Sankhya A, Aug. 2018. S. Sommer. An Infinitesimal Probabilistic Model for Principal Component Analysis of Manifold Valued Data. Sankhya A, Aug. 2018.
18.
go back to reference S. Sommer and A. M. Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 9(3):391–410, 2017.MathSciNetCrossRef S. Sommer and A. M. Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 9(3):391–410, 2017.MathSciNetCrossRef
19.
go back to reference D. W. Stroock and S. R. S. Varadhan. On the support of diffusion processes with applications to the strong maximum principle. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pages 333–359. Univ. California Press, Berkeley, Calif., 1972. D. W. Stroock and S. R. S. Varadhan. On the support of diffusion processes with applications to the strong maximum principle. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pages 333–359. Univ. California Press, Berkeley, Calif., 1972.
Metadata
Title
Most Probable Paths for Anisotropic Brownian Motions on Manifolds
Authors
Erlend Grong
Stefan Sommer
Publication date
15-09-2022
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 1/2024
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-022-09594-4

Premium Partner