Skip to main content
Top
Published in:

01-12-2016 | Original Article

Motif detection speed up by using equations based on the degree sequence

Authors: Wolfgang E. Schlauch, Katharina A. Zweig

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To identify so-called network motifs, the fixed degree sequence model (fdsm) is usually used. For any real-world network, the fdsm is defined as the set of all graphs with the same degree sequence that do not have multiple edges between nodes or self-loops. A subgraph is called a network motif if it occurs statistically significantly often compared to its expected occurrence in the model. However, approximating this value by sampling from the fdsm is computationally expensive and does not scale for large networks. Thus, in this article, we propose a set of equations, based on the degree sequence and a simple independence assumption, to estimate the occurrence of a set of subgraphs in the fdsm. Based on a range of real-world networks, we show that these equations approximate the values in the fdsm very well, except only two data sets. We then propose an efficient way to characterize those data sets in which the equations can be used as an approximation to the fdsm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Berger A, Müller-Hannemann M (2010) Uniform sampling of digraphs with a fixed degree sequence. Graph theoretic concepts in computer science. Springer, New York, pp 220–231CrossRef Berger A, Müller-Hannemann M (2010) Uniform sampling of digraphs with a fixed degree sequence. Graph theoretic concepts in computer science. Springer, New York, pp 220–231CrossRef
go back to reference Blitzstein J, Diaconis P (2011) A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math 6(4):489–522MathSciNetCrossRefMATH Blitzstein J, Diaconis P (2011) A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math 6(4):489–522MathSciNetCrossRefMATH
go back to reference Bollobás B (1980) A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur J Comb 1(4):311–316MathSciNetCrossRefMATH Bollobás B (1980) A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur J Comb 1(4):311–316MathSciNetCrossRefMATH
go back to reference Del Genio CI, Kim H, Toroczkai Z, Bassler KE (2010) Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PLoS One 5(4):e10,012CrossRef Del Genio CI, Kim H, Toroczkai Z, Bassler KE (2010) Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PLoS One 5(4):e10,012CrossRef
go back to reference Erdős PL, Miklós I, Toroczkai Z (2010) A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs. Electron J Comb 17(1):R66MathSciNetMATH Erdős PL, Miklós I, Toroczkai Z (2010) A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs. Electron J Comb 17(1):R66MathSciNetMATH
go back to reference Gkantsidis C, Mihail M, Zegura E (2003) The markov chain simulation method for generating connected power law random graphs. In: SIAM Alenex Gkantsidis C, Mihail M, Zegura E (2003) The markov chain simulation method for generating connected power law random graphs. In: SIAM Alenex
go back to reference Janson S (2013) The probability that a random multigraph is simple, ii Janson S (2013) The probability that a random multigraph is simple, ii
go back to reference Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11):1746–1758CrossRef Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11):1746–1758CrossRef
go back to reference Kim H, Genio CID, Bassler KE, Toroczkai Z (2012) Constructing and sampling directed graphs with given degree sequences. New J Phys 14(2):023,012CrossRef Kim H, Genio CID, Bassler KE, Toroczkai Z (2012) Constructing and sampling directed graphs with given degree sequences. New J Phys 14(2):023,012CrossRef
go back to reference Klymko C, Gleich DF, Kolda TG (2014) Using triangles to improve community detection in directed networks. In: The second ASE international conference on big data science and computing, BigDataScience Klymko C, Gleich DF, Kolda TG (2014) Using triangles to improve community detection in directed networks. In: The second ASE international conference on big data science and computing, BigDataScience
go back to reference Kolmogorov AN (1933) Sulla determinazione empirica di una legge di distribuzione. na Kolmogorov AN (1933) Sulla determinazione empirica di una legge di distribuzione. na
go back to reference Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and hierarchical community structure in complex networks. New J Phys 11(3):033,015CrossRef Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and hierarchical community structure in complex networks. New J Phys 11(3):033,015CrossRef
go back to reference Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRef Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827CrossRef
go back to reference Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542CrossRef Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542CrossRef
go back to reference Milo R, Kashtan N, Itzkovitz S, Newman, MEJ, Alon, U (2003) On the uniform generation of random graphs with prescribed degree sequences. arXiv preprint cond-mat/0312028 Milo R, Kashtan N, Itzkovitz S, Newman, MEJ, Alon, U (2003) On the uniform generation of random graphs with prescribed degree sequences. arXiv preprint cond-mat/0312028
go back to reference Newman ME, Watts DJ, Strogatz SH (2002) Random graph models of social networks. Proc Natl Acad Sci USA 99:2566–2572CrossRefMATH Newman ME, Watts DJ, Strogatz SH (2002) Random graph models of social networks. Proc Natl Acad Sci USA 99:2566–2572CrossRefMATH
go back to reference Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113 Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113
go back to reference Ray J, Pinar A, Seshadhri C (2012) Are we there yet? when to stop a markov chain while generating random graphs. In: Bonato A, Janssen J (eds) Algorithms and Models for the Web Graph, vol 7323., Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 153–164CrossRef Ray J, Pinar A, Seshadhri C (2012) Are we there yet? when to stop a markov chain while generating random graphs. In: Bonato A, Janssen J (eds) Algorithms and Models for the Web Graph, vol 7323., Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 153–164CrossRef
go back to reference Schlauch WE, Horvát EÁ, Zweig KA (2015) Different flavors of randomness: comparing random graph models with fixed degree sequences. Soc Netw Anal Min 5(1):1–14CrossRef Schlauch WE, Horvát EÁ, Zweig KA (2015) Different flavors of randomness: comparing random graph models with fixed degree sequences. Soc Netw Anal Min 5(1):1–14CrossRef
go back to reference Shen H, Cheng X, Cai K, Hu MB (2009) Detect overlapping and hierarchical community structure in networks. Phys A Stat Mech Appl 388(8):1706–1712CrossRef Shen H, Cheng X, Cai K, Hu MB (2009) Detect overlapping and hierarchical community structure in networks. Phys A Stat Mech Appl 388(8):1706–1712CrossRef
go back to reference Viger F, Latapy M (2005) Efficient and simple generation of random simple connected graphs with prescribed degree sequence. Computing and Combinatorics. Springer, New York, pp 440–449CrossRef Viger F, Latapy M (2005) Efficient and simple generation of random simple connected graphs with prescribed degree sequence. Computing and Combinatorics. Springer, New York, pp 440–449CrossRef
go back to reference Wang J, Tsang WW, Marsaglia G (2003) Evaluating kolmogorov’s distribution. J Stat Softw 8(18):1–14 Wang J, Tsang WW, Marsaglia G (2003) Evaluating kolmogorov’s distribution. J Stat Softw 8(18):1–14
go back to reference Wilson J (1987) Methods for detecting non-randomness in species co-occurrences: a contribution. Oecologia 73(4):579–582CrossRef Wilson J (1987) Methods for detecting non-randomness in species co-occurrences: a contribution. Oecologia 73(4):579–582CrossRef
go back to reference Zweig KA (2010) How to forget the second side of the story: a new method for the one-mode projection of bipartite graphs. In: Proceedings of the 2010 international conference on advances in social networks analysis and mining ASONAM 2010, pp. 200–207 Zweig KA (2010) How to forget the second side of the story: a new method for the one-mode projection of bipartite graphs. In: Proceedings of the 2010 international conference on advances in social networks analysis and mining ASONAM 2010, pp. 200–207
go back to reference Zweig KA, Kaufmann M (2011) A systematic approach to the one-mode projection of bipartite graphs. Soc Netw Anal Min 1(3):187–218CrossRef Zweig KA, Kaufmann M (2011) A systematic approach to the one-mode projection of bipartite graphs. Soc Netw Anal Min 1(3):187–218CrossRef
Metadata
Title
Motif detection speed up by using equations based on the degree sequence
Authors
Wolfgang E. Schlauch
Katharina A. Zweig
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0357-6

Premium Partner