Skip to main content
Top

2025 | OriginalPaper | Chapter

Motivation, Concerns, and Attitudes Towards AI: Differences by Gender, Age, and Culture

Authors : Mohammad Mominur Rahman, Areej Babiker, Raian Ali

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Attitudes towards artificial intelligence (AI) are influenced by individual intentions to use it and concerns about its implications, which can vary across different age groups and genders, highlighting the need for more nuanced design and communication strategies. This study explores how gender and age influence attitudes towards AI by examining intentions and concerns from a cross-cultural perspective. Using a sample of 562 participants from the UK (281) and the Arab Gulf Cooperation Council (GCC) (281), the research investigates demographic and cultural differences in AI use intentions and concerns. The study finds that gender and age significantly influence AI acceptance in the UK, whereas these factors have a less pronounced impact in the Arab context. The results highlight that women generally express more ethical and privacy concerns about AI than men, and older adults show more apprehension towards AI acceptance than younger individuals. By showing that cultural nuances play a role in shaping these attitudes, we also show the need for tailored strategies to address demographic-specific concerns to reduce fear towards AI and, at the same time, avoid over-acceptance. The combined influence of age and gender can enhance the effectiveness of AI strategies, emphasizing the importance of considering personal and cultural factors in design and policy-making, e.g., in aiding trust calibration and informed adoption of AI.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2016) Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2016)
2.
go back to reference Kaya, F., et al.: The roles of personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence. Int. J. Hum. Comput. Interact. 40(2), 497–514 (2024)CrossRef Kaya, F., et al.: The roles of personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence. Int. J. Hum. Comput. Interact. 40(2), 497–514 (2024)CrossRef
3.
go back to reference Araujo, T., et al.: In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI Soc. 35(3), 611–623 (2020)CrossRef Araujo, T., et al.: In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI Soc. 35(3), 611–623 (2020)CrossRef
4.
go back to reference Suerdem, A., Akkilic, S.: Cultural differences in media framing of AI. In: Science Cultures in a Diverse World: Knowing, Sharing, Caring, pp. 185–207 (2021) Suerdem, A., Akkilic, S.: Cultural differences in media framing of AI. In: Science Cultures in a Diverse World: Knowing, Sharing, Caring, pp. 185–207 (2021)
5.
go back to reference Sindermann, C., et al.: Assessing the attitude towards artificial intelligence: introduction of a short measure in German, Chinese, and English language. KI-Künstliche intelligenz 35(1), 109–118 (2021)CrossRef Sindermann, C., et al.: Assessing the attitude towards artificial intelligence: introduction of a short measure in German, Chinese, and English language. KI-Künstliche intelligenz 35(1), 109–118 (2021)CrossRef
6.
go back to reference Stein, J.-P., et al.: Attitudes towards AI: measurement and associations with personality. Sci. Rep. 14(1), 2909 (2024) Stein, J.-P., et al.: Attitudes towards AI: measurement and associations with personality. Sci. Rep. 14(1), 2909 (2024)
7.
go back to reference Schepman, A., Rodway, P.: Initial validation of the general attitudes towards Artificial Intelligence Scale. Comput. Hum. Behav. Rep. 1, 100014 (2020)CrossRef Schepman, A., Rodway, P.: Initial validation of the general attitudes towards Artificial Intelligence Scale. Comput. Hum. Behav. Rep. 1, 100014 (2020)CrossRef
8.
go back to reference Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 46(2), 186–204 (2000)CrossRef Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 46(2), 186–204 (2000)CrossRef
9.
go back to reference Venkatesh, V., et al.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 157–178 (2012) Venkatesh, V., et al.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 157–178 (2012)
10.
go back to reference Ismatullaev, U.V.U., Kim, S.-H.: Review of the factors affecting acceptance of AI-infused systems. Hum. Factors 66(1), 126–144 (2022)CrossRef Ismatullaev, U.V.U., Kim, S.-H.: Review of the factors affecting acceptance of AI-infused systems. Hum. Factors 66(1), 126–144 (2022)CrossRef
11.
go back to reference Habbal, A., et al.: Artificial intelligence trust, risk and security management (AI trism): frameworks, applications, challenges and future research directions. Expert Syst. Appl. 240, 122442 (2024)CrossRef Habbal, A., et al.: Artificial intelligence trust, risk and security management (AI trism): frameworks, applications, challenges and future research directions. Expert Syst. Appl. 240, 122442 (2024)CrossRef
12.
go back to reference Taddeo, M., et al.: Trusting artificial intelligence in cybersecurity is a double-edged sword. Nat. Mach. Intell. 1(12), 557–560 (2019)CrossRef Taddeo, M., et al.: Trusting artificial intelligence in cybersecurity is a double-edged sword. Nat. Mach. Intell. 1(12), 557–560 (2019)CrossRef
13.
go back to reference Dopamu, O., et al.: Artificial intelligence and US financial institutions: review of AI-assisted regulatory compliance for cybersecurity. World J. Adv. Res. Rev. (2024) Dopamu, O., et al.: Artificial intelligence and US financial institutions: review of AI-assisted regulatory compliance for cybersecurity. World J. Adv. Res. Rev. (2024)
14.
go back to reference Ahuja, S.P., Mani, S.: Availability of services in the era of cloud computing. Netw. Commun. Technol. 1(1) (2012) Ahuja, S.P., Mani, S.: Availability of services in the era of cloud computing. Netw. Commun. Technol. 1(1) (2012)
15.
16.
go back to reference Fernandez-Llorca, D., Gómez, E.: Trustworthy artificial intelligence requirements in the autonomous driving domain. Computer 56(2), 29–39 (2023)CrossRef Fernandez-Llorca, D., Gómez, E.: Trustworthy artificial intelligence requirements in the autonomous driving domain. Computer 56(2), 29–39 (2023)CrossRef
17.
go back to reference Makar, K.Š.: Driven by artificial intelligence (AI)–improving operational efficiency and competitiveness in business. In: 2023 46th MIPRO ICT and Electronics Convention (MIPRO), pp. 1142–1147. IEEE (2023) Makar, K.Š.: Driven by artificial intelligence (AI)–improving operational efficiency and competitiveness in business. In: 2023 46th MIPRO ICT and Electronics Convention (MIPRO), pp. 1142–1147. IEEE (2023)
18.
go back to reference Shin, D.: User perceptions of algorithmic decisions in the personalized AI system: perceptual evaluation of fairness, accountability, transparency, and explainability. J. Broadcast. Electron. Media 64(4), 541–565 (2020)CrossRef Shin, D.: User perceptions of algorithmic decisions in the personalized AI system: perceptual evaluation of fairness, accountability, transparency, and explainability. J. Broadcast. Electron. Media 64(4), 541–565 (2020)CrossRef
19.
go back to reference Arntz, M., et al.: The risk of automation for jobs in OECD countries: a comparative analysis. OECD iLibrary, no. 189, 34 p. (2016) Arntz, M., et al.: The risk of automation for jobs in OECD countries: a comparative analysis. OECD iLibrary, no. 189, 34 p. (2016)
20.
go back to reference Hu, Y., Min, H.K.: The dark side of artificial intelligence in service: the ‘watching-eye’ effect and privacy concerns. Int. J. Hosp. Manag. 110, 103437 (2023)CrossRef Hu, Y., Min, H.K.: The dark side of artificial intelligence in service: the ‘watching-eye’ effect and privacy concerns. Int. J. Hosp. Manag. 110, 103437 (2023)CrossRef
21.
go back to reference Noble, S.U.: Algorithms of oppression: how search engines reinforce racism. In: Algorithms of Oppression. New York University Press, New York (2018) Noble, S.U.: Algorithms of oppression: how search engines reinforce racism. In: Algorithms of Oppression. New York University Press, New York (2018)
22.
go back to reference Mittelstadt, B.D., et al.: The ethics of algorithms: mapping the debate. Big Data Soc. 3(2), 2053951716679679 (2016)CrossRef Mittelstadt, B.D., et al.: The ethics of algorithms: mapping the debate. Big Data Soc. 3(2), 2053951716679679 (2016)CrossRef
23.
go back to reference Macrae, C.: Managing risk and resilience in autonomous and intelligent systems: exploring safety in the development, deployment, and use of artificial intelligence in healthcare. Risk Anal. (2024) Macrae, C.: Managing risk and resilience in autonomous and intelligent systems: exploring safety in the development, deployment, and use of artificial intelligence in healthcare. Risk Anal. (2024)
24.
go back to reference Shin, D., Park, Y.J.: Role of fairness, accountability, and transparency in algorithmic affordance. Comput. Hum. Behav. 98, 277–284 (2019)CrossRef Shin, D., Park, Y.J.: Role of fairness, accountability, and transparency in algorithmic affordance. Comput. Hum. Behav. 98, 277–284 (2019)CrossRef
25.
go back to reference Rao, J.P., Prasad, R.S.: Tangible and intangible impact of AI usage: AI for information accessibility. Int. Rev. Inf. Ethics 29 (2020) Rao, J.P., Prasad, R.S.: Tangible and intangible impact of AI usage: AI for information accessibility. Int. Rev. Inf. Ethics 29 (2020)
26.
go back to reference Wu, C.-J., et al.: Sustainable AI: environmental implications, challenges and opportunities. Proc. Mach. Learn. Syst. 4, 795–813 (2022) Wu, C.-J., et al.: Sustainable AI: environmental implications, challenges and opportunities. Proc. Mach. Learn. Syst. 4, 795–813 (2022)
27.
go back to reference Siau, K., Wang, W.: Building trust in artificial intelligence, machine learning, and robotics. Cutter Bus. Technol. J. 31(2), 47–53 (2018) Siau, K., Wang, W.: Building trust in artificial intelligence, machine learning, and robotics. Cutter Bus. Technol. J. 31(2), 47–53 (2018)
28.
go back to reference Gupta, P.: Addressing bias and fairness issues in artificial intelligence. Curr. J. Appl. Sci. Technol. 43(6), 109–119 (2023) Gupta, P.: Addressing bias and fairness issues in artificial intelligence. Curr. J. Appl. Sci. Technol. 43(6), 109–119 (2023)
29.
go back to reference Boch, A., et al.: Towards an accountability framework for AI: ethical and legal considerations. Institute for Ethics in AI, Technical University of Munich (2022) Boch, A., et al.: Towards an accountability framework for AI: ethical and legal considerations. Institute for Ethics in AI, Technical University of Munich (2022)
30.
go back to reference Acquisti, A., et al.: Privacy and human behavior in the age of information. Science (1979), 347(6221), 509–514 (2015) Acquisti, A., et al.: Privacy and human behavior in the age of information. Science (1979), 347(6221), 509–514 (2015)
31.
go back to reference Binns, R.: Fairness in machine learning: lessons from political philosophy. In: Conference on Fairness, Accountability and Transparency, pp. 149–159. PMLR (2018) Binns, R.: Fairness in machine learning: lessons from political philosophy. In: Conference on Fairness, Accountability and Transparency, pp. 149–159. PMLR (2018)
32.
go back to reference Eagly, A.H., Wood, W.: Social role theory of sex differences. In: The Wiley Blackwell Encyclopedia of Gender and Sexuality Studies, pp. 1–3 (2016) Eagly, A.H., Wood, W.: Social role theory of sex differences. In: The Wiley Blackwell Encyclopedia of Gender and Sexuality Studies, pp. 1–3 (2016)
33.
go back to reference Brynjolfsson, E., McAfee, A.: The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. WW Norton & Company, New York (2014) Brynjolfsson, E., McAfee, A.: The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. WW Norton & Company, New York (2014)
34.
go back to reference Bughin, J., et al.: Skill Shift: Automation and the Future of the Workforce, vol. 1, no. 2018, pp. 3–84. McKinsey Global Institute, New York (2018) Bughin, J., et al.: Skill Shift: Automation and the Future of the Workforce, vol. 1, no. 2018, pp. 3–84. McKinsey Global Institute, New York (2018)
35.
go back to reference Klein, V., et al.: How WEIRD and androcentric is sex research? Global inequities in study populations. J. Sex Res. 59(7), 810–817 (2022)CrossRef Klein, V., et al.: How WEIRD and androcentric is sex research? Global inequities in study populations. J. Sex Res. 59(7), 810–817 (2022)CrossRef
37.
go back to reference Brislin, R.W.: Back-translation for cross-cultural research. J. Cross Cult. Psychol. 1(3), 185–216 (1970)CrossRef Brislin, R.W.: Back-translation for cross-cultural research. J. Cross Cult. Psychol. 1(3), 185–216 (1970)CrossRef
39.
go back to reference Abuelezz, I., et al.: How do gender and age similarities with a potential social engineer influence one’s trust and willingness to take security risks?. Res. Square (2024) Abuelezz, I., et al.: How do gender and age similarities with a potential social engineer influence one’s trust and willingness to take security risks?. Res. Square (2024)
40.
go back to reference Sauer, P.: The role of age and gender in education expansion. In: INEQ Working Paper Series No. 4 (2016) Sauer, P.: The role of age and gender in education expansion. In: INEQ Working Paper Series No. 4 (2016)
41.
go back to reference Rodriquez, M., et al.: Is it time to integrate sex and gender into drug design and development. Future Med. Chem. 5, 557–559 (2015)CrossRef Rodriquez, M., et al.: Is it time to integrate sex and gender into drug design and development. Future Med. Chem. 5, 557–559 (2015)CrossRef
42.
go back to reference Suman, S.K., et al.: Age and gender influences on consumer behavior towards online discounts. Int. J. Recent Technol. Eng. 8(2), 5202–5211 (2019)MathSciNet Suman, S.K., et al.: Age and gender influences on consumer behavior towards online discounts. Int. J. Recent Technol. Eng. 8(2), 5202–5211 (2019)MathSciNet
43.
go back to reference Zhang, L., et al.: The effect of power and gender on technology acceptance. J. Hosp. Tour. Technol. 5(3), 299–314 (2014)MathSciNet Zhang, L., et al.: The effect of power and gender on technology acceptance. J. Hosp. Tour. Technol. 5(3), 299–314 (2014)MathSciNet
44.
go back to reference Ong, C.-S., Lai, J.-Y.: Gender differences in perceptions and relationships among dominants of e-learning acceptance. Comput. Human. Behav. 22(5), 816–829 (2006)CrossRef Ong, C.-S., Lai, J.-Y.: Gender differences in perceptions and relationships among dominants of e-learning acceptance. Comput. Human. Behav. 22(5), 816–829 (2006)CrossRef
45.
go back to reference Morris, M.G., Venkatesh, V.: Age differences in technology adoption decisions: implications for a changing work force. Pers. Psychol. 53(2), 375–403 (2000)CrossRef Morris, M.G., Venkatesh, V.: Age differences in technology adoption decisions: implications for a changing work force. Pers. Psychol. 53(2), 375–403 (2000)CrossRef
46.
go back to reference Czaja, S.J., et al.: Factors predicting the use of technology: findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychol. Aging 21(2), 333 (2006) Czaja, S.J., et al.: Factors predicting the use of technology: findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychol. Aging 21(2), 333 (2006)
47.
go back to reference Triandis, H.C., Gelfland, M.J.: Individualism and collectivism scale (also known as the culture orientation scale). J. Pers. Soc. Psychol. 74, 118–128 (1998)CrossRef Triandis, H.C., Gelfland, M.J.: Individualism and collectivism scale (also known as the culture orientation scale). J. Pers. Soc. Psychol. 74, 118–128 (1998)CrossRef
48.
go back to reference Nguyen, D., Hekman, E.: The news framing of artificial intelligence: a critical exploration of how media discourses make sense of automation. AI Soc. 39(2), 437–451 (2024)CrossRef Nguyen, D., Hekman, E.: The news framing of artificial intelligence: a critical exploration of how media discourses make sense of automation. AI Soc. 39(2), 437–451 (2024)CrossRef
49.
go back to reference Cui, D., Wu, F.: The influence of media use on public perceptions of artificial intelligence in China: evidence from an online survey. Inf. Dev. 37(1), 45–57 (2019)CrossRef Cui, D., Wu, F.: The influence of media use on public perceptions of artificial intelligence in China: evidence from an online survey. Inf. Dev. 37(1), 45–57 (2019)CrossRef
51.
go back to reference Henwood, K.L., et al.: Science, technology and risk perception. Equal. Oppor. Int. 27(8), 662–676 (2008)CrossRef Henwood, K.L., et al.: Science, technology and risk perception. Equal. Oppor. Int. 27(8), 662–676 (2008)CrossRef
52.
go back to reference Mittal, M., Vyas, R.K.: A study of psychological reasons for gender differences in preferences for risk and investment decision making. IUP J. Behav. Finance 8(3), 45 (2011) Mittal, M., Vyas, R.K.: A study of psychological reasons for gender differences in preferences for risk and investment decision making. IUP J. Behav. Finance 8(3), 45 (2011)
Metadata
Title
Motivation, Concerns, and Attitudes Towards AI: Differences by Gender, Age, and Culture
Authors
Mohammad Mominur Rahman
Areej Babiker
Raian Ali
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_28

Premium Partner