Skip to main content
Top

10-04-2024 | Research Article

Motor imagery decoding using source optimized transfer learning based on multi-loss fusion CNN

Authors: Jun Ma, Banghua Yang, Fenqi Rong, Shouwei Gao, Wen Wang

Published in: Cognitive Neurodynamics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transfer learning is increasingly used to decode multi-class motor imagery tasks. Previous transfer learning ignored the optimizability of the source model, weakened the adaptability to the target domain and limited the performance. This paper first proposes the multi-loss fusion convolutional neural network (MF-CNN) to make an optimizable source model. Then we propose a novel source optimized transfer learning (SOTL), which optimizes the source model to make it more in line with the target domain's features to improve the target model's performance. We transfer the model trained from 16 healthy subjects to 16 stroke patients. The average classification accuracy achieves 51.2 ± 0.17% in the four types of unilateral upper limb motor imagery tasks, which is significantly higher than the classification accuracy of deep learning (p < 0.001) and transfer learning (p < 0.05). In this paper, an MI model from the data of healthy subjects can be used for the classification of stroke patients and can demonstrate good classification results, which provides experiential support for the study of transfer learning and the modeling of stroke rehabilitation training.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Banluesombatkul N, Ouppaphan P, Leelaarporn P, Lakhan P, Chaitusaney B, Jaimchariyatam N, Wilaiprasitporn T (2020) MetaSleepLearner: a pilot study on fast adaptation of bio-signals-based sleep stage classifier to new individual subject using meta-learning. IEEE J Biomed Health Inform 25(6):1949–1963. https://doi.org/10.1109/JBHI.2020.3037693CrossRef Banluesombatkul N, Ouppaphan P, Leelaarporn P, Lakhan P, Chaitusaney B, Jaimchariyatam N, Wilaiprasitporn T (2020) MetaSleepLearner: a pilot study on fast adaptation of bio-signals-based sleep stage classifier to new individual subject using meta-learning. IEEE J Biomed Health Inform 25(6):1949–1963. https://​doi.​org/​10.​1109/​JBHI.​2020.​3037693CrossRef
go back to reference Mane R, Robinson N, Vinod AP, Lee SW, Guan C (2020b) A multi-view CNN with novel variance layer for motor imagery brain computer interface. In: 2020 42nd annual international conference of the IEEE engineering in medicine & biology society (EMBC), 20–24 July 2020, pp 2950–2953. https://doi.org/10.1109/EMBC44109.2020.9175874 Mane R, Robinson N, Vinod AP, Lee SW, Guan C (2020b) A multi-view CNN with novel variance layer for motor imagery brain computer interface. In: 2020 42nd annual international conference of the IEEE engineering in medicine & biology society (EMBC), 20–24 July 2020, pp 2950–2953. https://​doi.​org/​10.​1109/​EMBC44109.​2020.​9175874
go back to reference Naghdi S, Ansari NN, Mansouri K, Hasson S (2010) A neurophysiological and clinical study of Brunnstrom recovery stages in the upper limb following stroke. Brain Inj 24(11):1372–1378CrossRefPubMed Naghdi S, Ansari NN, Mansouri K, Hasson S (2010) A neurophysiological and clinical study of Brunnstrom recovery stages in the upper limb following stroke. Brain Inj 24(11):1372–1378CrossRefPubMed
go back to reference Sharbaf ME, Fallah A, Rashidi S (2017) EEG-based multi-class motor imagery classification using variable sized filter bank and enhanced one versus one classifier. In: 2017 2nd conference on swarm intelligence and evolutionary computation (CSIEC), 7–9 March 2017, pp 135–140. https://doi.org/10.1109/CSIEC.2017.7940174 Sharbaf ME, Fallah A, Rashidi S (2017) EEG-based multi-class motor imagery classification using variable sized filter bank and enhanced one versus one classifier. In: 2017 2nd conference on swarm intelligence and evolutionary computation (CSIEC), 7–9 March 2017, pp 135–140. https://​doi.​org/​10.​1109/​CSIEC.​2017.​7940174
Metadata
Title
Motor imagery decoding using source optimized transfer learning based on multi-loss fusion CNN
Authors
Jun Ma
Banghua Yang
Fenqi Rong
Shouwei Gao
Wen Wang
Publication date
10-04-2024
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-024-10100-5