Skip to main content
Top
Published in: Geotechnical and Geological Engineering 2/2020

16-12-2019 | Technical Note

Multi-approach Geological Strength Index (GSI) Determination for Stratified Sedimentary Rock Masses in Singapore

Author: Kar Winn

Published in: Geotechnical and Geological Engineering | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main aim of this study is to present the results of the Geological Strength Index (GSI) predicted by three different empirical equations, currently available in literature, which used the input parameters applied in the well-established rock mass classification systems, namely the RMR1989 (Bieniawski in Engineering rock mass classification. Wiley, New York, 1989) and the Q system (Barton et al. in Rock Mech. 6(4):189–239, 1974). To meet the objective, the GSI of the stratified sedimentary rock masses at underground rock cavern excavation project in Singapore are calculated by the three different empirical equations. It is observed that the empirical approach by Hoek (in: 47th US rock mechanics/geomechanics symposium, American Rock Mechanics Association, 2013) is the highest among those calculated GSI values. In the next steps, the empirically calculated GSI values are compared with quantitative GSI and qualitative GSI determined at the site. It is noted that all three calculated vales are still higher than the quantitative GSI values determined by charts proposed by Hoek (in: 47th US rock mechanics/geomechanics symposium, American Rock Mechanics Association, 2013), Cai et al. (Int J Rock Mech Min Sci 41(1):3–49, 2004), Sonmez and Ulusay (Intl. J Rock Mech Min Sci 36:743–760, 1999) and Russo (Tunnel Undergr Space Technol 24:103–111, 2009) approaches (Winn and Wong in Geotech Geol Eng, 2019. https://​doi.​org/​10.​1007/​s10706-018-0748-8) and qualitative GSI values determined on excavated rock faces using charts by Hoek et al. (Support of underground excavations in hard rock. Balkema, Rotterdam, 1995) and Marinos and Hoek (in: GeoEng2000, Melbourne, Australia, 2000). To make a narrow gap, modification of those empirical equations is proposed for the sedimentary rock masses in Singapore. The calculated results by proposed equations with field-estimated qualitative GSI fall in the range of ± 10. The Excel add-in program Crystal Ball (Oracle Crop.) has been applied to perform probabilistic analyses using Monte Carlo simulations in all three modified empirical equations for determination of the GSI. It is observed that the results of the base case, mean and median GSI values are in the comparable ranges. The sensitivity analysis was performed to explore the influence of individual input parameter in the determination of GSI.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Barton N (1995) The influence of joint properties in modelling jointed rock masses. In: Keynote lecture, 8th ISRM Congress, Tokyo, Balkema, Rotterdam, vol 3, pp 1023–1032 Barton N (1995) The influence of joint properties in modelling jointed rock masses. In: Keynote lecture, 8th ISRM Congress, Tokyo, Balkema, Rotterdam, vol 3, pp 1023–1032
go back to reference Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–236CrossRef Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–236CrossRef
go back to reference Bieniawski ZT (1976) Rock mass classification in rock engineering. In: Proceedings of the symposium on exploration for rock engineering, Johannesburg, pp 97–106 Bieniawski ZT (1976) Rock mass classification in rock engineering. In: Proceedings of the symposium on exploration for rock engineering, Johannesburg, pp 97–106
go back to reference Bieniawski ZT (1989) Engineering rock mass classification. Wiley, New York Bieniawski ZT (1989) Engineering rock mass classification. Wiley, New York
go back to reference Cai M, Kaiser PK, Uno H, Tasaka Y, Minami M (2004) Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. Int J Rock Mech Min Sci 41(1):3–19CrossRef Cai M, Kaiser PK, Uno H, Tasaka Y, Minami M (2004) Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. Int J Rock Mech Min Sci 41(1):3–19CrossRef
go back to reference Crystal Ball User’s Guide (1988, 2007) Release 11.1.2.4.850. (Oracle Inc.) Crystal Ball User’s Guide (1988, 2007) Release 11.1.2.4.850. (Oracle Inc.)
go back to reference Hoek E (1994) Strength of rock and rock masses. ISRM News J 2(2):4–16 Hoek E (1994) Strength of rock and rock masses. ISRM News J 2(2):4–16
go back to reference Hoek E (1999) Putting numbers to geology: an engineer’s view point. Q J Eng Geol 32:1–19CrossRef Hoek E (1999) Putting numbers to geology: an engineer’s view point. Q J Eng Geol 32:1–19CrossRef
go back to reference Hoek E, Brown ET (1980a) Underground excavation in rock. Institution of Mining and Metallurgy, London Hoek E, Brown ET (1980a) Underground excavation in rock. Institution of Mining and Metallurgy, London
go back to reference Hoek E, Brown ET (1980b) Empirical strength criterion for rock mass. J Geotech Eng Div ASCE 106:1013–1035 Hoek E, Brown ET (1980b) Empirical strength criterion for rock mass. J Geotech Eng Div ASCE 106:1013–1035
go back to reference Hoek E, Brown BT (1988) The Hoek–Brown failure criterion: a 1988 update. In: Curran JC (eds) Rock engineering for underground excavations, Proceedings 15th Canadian rock mechanics symposium. Toront0: Department of Civil Engineering, University of Toronto, pp 31–38 Hoek E, Brown BT (1988) The Hoek–Brown failure criterion: a 1988 update. In: Curran JC (eds) Rock engineering for underground excavations, Proceedings 15th Canadian rock mechanics symposium. Toront0: Department of Civil Engineering, University of Toronto, pp 31–38
go back to reference Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186CrossRef Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186CrossRef
go back to reference Hoek E, Wood D, Shah S (1992) A modified Hoek–Brown criterion for jointed rock masses. In: Hudson JA (eds.) Proceeding rock characterization, symposium international social rock mechanism: Eurock. British Geological Survey, London, pp 209–214 Hoek E, Wood D, Shah S (1992) A modified Hoek–Brown criterion for jointed rock masses. In: Hudson JA (eds.) Proceeding rock characterization, symposium international social rock mechanism: Eurock. British Geological Survey, London, pp 209–214
go back to reference Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, Rotterdam Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, Rotterdam
go back to reference Hoek E, Marinos P, Benissi M (1998) Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bull Eng Geol Env 57(2):151–160CrossRef Hoek E, Marinos P, Benissi M (1998) Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bull Eng Geol Env 57(2):151–160CrossRef
go back to reference Hoek E, Carter TG, Diederichs MS (2013) Quantification of the geological strength index chart. In: 47th US rock mechanics/geomechanics symposium, American rock mechanics association ARMA 13-672 Hoek E, Carter TG, Diederichs MS (2013) Quantification of the geological strength index chart. In: 47th US rock mechanics/geomechanics symposium, American rock mechanics association ARMA 13-672
go back to reference Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rock mass strength estimation. In: GeoEng2000, Melbourne, Australia 2000. CD-ROM Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rock mass strength estimation. In: GeoEng2000, Melbourne, Australia 2000. CD-ROM
go back to reference Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Environ (IAEG) 60:85–92CrossRef Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Environ (IAEG) 60:85–92CrossRef
go back to reference Morelli GL (2015) Variability of the GSI index estimated from different quantitative methods. Geotech Geol Eng 33(4):983–995CrossRef Morelli GL (2015) Variability of the GSI index estimated from different quantitative methods. Geotech Geol Eng 33(4):983–995CrossRef
go back to reference Palmstrom A (1995) RMi: a rock mass characterization system for rock engineering purposes. Ph.D. Thesis, University of Oslo, Norway Palmstrom A (1995) RMi: a rock mass characterization system for rock engineering purposes. Ph.D. Thesis, University of Oslo, Norway
go back to reference Russo G (2009) A new rational method for calculating the GSI. Tunn Undergr Space Technol 24:103–111CrossRef Russo G (2009) A new rational method for calculating the GSI. Tunn Undergr Space Technol 24:103–111CrossRef
go back to reference Sonmez H, Ulusay R (1999) Modification to the geological strength index (GSI) and their applicability to stability of slopes. Intl J Rock Mech Min Sci 36:743–760CrossRef Sonmez H, Ulusay R (1999) Modification to the geological strength index (GSI) and their applicability to stability of slopes. Intl J Rock Mech Min Sci 36:743–760CrossRef
go back to reference Winn K, Wong NY (2017) Quantitative GSI determination of Singapore’s sedimentary rock mass. In: 11th IAEG Asian regional conference. Kamanthu, Nepal, Nov 28–30, 2017 Winn K, Wong NY (2017) Quantitative GSI determination of Singapore’s sedimentary rock mass. In: 11th IAEG Asian regional conference. Kamanthu, Nepal, Nov 28–30, 2017
Metadata
Title
Multi-approach Geological Strength Index (GSI) Determination for Stratified Sedimentary Rock Masses in Singapore
Author
Kar Winn
Publication date
16-12-2019
Publisher
Springer International Publishing
Published in
Geotechnical and Geological Engineering / Issue 2/2020
Print ISSN: 0960-3182
Electronic ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-019-01149-9

Other articles of this Issue 2/2020

Geotechnical and Geological Engineering 2/2020 Go to the issue