Skip to main content
Top
Published in: Archive of Applied Mechanics 3/2023

21-11-2022 | Original

Multi-body musculoskeletal dynamic model of the human trunk based on an experimental approach

Authors: F. Moalla, S. Mehrez, F. Najar

Published in: Archive of Applied Mechanics | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To overcome certain back pain problems or enhance body performance in sports applications, a biomechanical study of the dynamic response of the human trunk is important to understand and predict its response in different loading conditions involving time-dependent excitations. In this work, it is proposed to use a simple experimental protocol and a 3D finite element dynamic model to extract effective stiffness, inertial and damping characteristics of the human trunk. A setup is designed to collect data from the motion of the trunk of a healthy subject attached around its pelvis, in an upright position with a small time-dependent applied force to its thoracic region via a securely designed small-amplitude crank–rod mechanism. The applied force and the subsequent displacements at the thoracic vertebrae T8 level are measured using a load cell and a laser displacement sensor, respectively. The experimental results are used to update a 3D multi-body musculoskeletal model. The model of the trunk is subdivided into 335 elements with independent geometrical and physical properties. A Newmark method is used to solve the derived equations in time, extract the dynamic properties of the trunk, and compare the results with those obtained experimentally. It is also shown that the simulated transient displacement is similar to the one obtained experimentally for relatively small time intervals. The collected experimental data are used to calculate the effective mass, stiffness, and damping factor and observe the effect of the applied excitation conditions on the dynamic response. These results are compared with those obtained numerically with the developed musculoskeletal model. Good agreement was observed for the variation of the effective dynamic properties of the trunk between the experimental and numerical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abouhossein, A., Weisse, B., Ferguson, S.J.: A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comp. Meth. Biomech. Biomed. Eng. 14(06), 527–537 (2011)CrossRef Abouhossein, A., Weisse, B., Ferguson, S.J.: A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comp. Meth. Biomech. Biomed. Eng. 14(06), 527–537 (2011)CrossRef
2.
go back to reference Ackermann, M., Schiehlen, W.: Dynamic analysis of human gait disorder and metabolical cost estimation. Arch. Appl. Mech. 75(10), 569–594 (2006)CrossRefMATH Ackermann, M., Schiehlen, W.: Dynamic analysis of human gait disorder and metabolical cost estimation. Arch. Appl. Mech. 75(10), 569–594 (2006)CrossRefMATH
3.
go back to reference Bazrgari, B., Shirazi-Adl, A., Arjmand, N.: Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. Eur. Spine J. 16(5), 687–699 (2007)CrossRef Bazrgari, B., Shirazi-Adl, A., Arjmand, N.: Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. Eur. Spine J. 16(5), 687–699 (2007)CrossRef
4.
go back to reference Bazrgari, B., Shirazi-Adl, A., Kasra, M.: Computation of trunk muscle forces, spinal loads and stability in whole-body vibration. J. Sound Vibrat. 318(4–5), 1334–1347 (2008)CrossRef Bazrgari, B., Shirazi-Adl, A., Kasra, M.: Computation of trunk muscle forces, spinal loads and stability in whole-body vibration. J. Sound Vibrat. 318(4–5), 1334–1347 (2008)CrossRef
5.
go back to reference Bergmark, A.: Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop. Scand. 60(sup230), 1–54 (1989)CrossRef Bergmark, A.: Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop. Scand. 60(sup230), 1–54 (1989)CrossRef
6.
go back to reference Callaghan, J.P., McGill, S.M.: Low back joint loading and kinematics during standing and unsupported sitting. Ergonomics 44(3), 280–294 (2001)CrossRef Callaghan, J.P., McGill, S.M.: Low back joint loading and kinematics during standing and unsupported sitting. Ergonomics 44(3), 280–294 (2001)CrossRef
7.
go back to reference Cameron, J.R., Skofronick, J.G., Grant, R.M., Morin, R.L.: Physics of the body. Wiley Online (2000) Cameron, J.R., Skofronick, J.G., Grant, R.M., Morin, R.L.: Physics of the body. Wiley Online (2000)
8.
go back to reference Cholewicki, J., McGill, S.M., Norman, R.W.: Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J. Biomech. 28(3), 321–331 (1995)CrossRef Cholewicki, J., McGill, S.M., Norman, R.W.: Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J. Biomech. 28(3), 321–331 (1995)CrossRef
9.
go back to reference Christophy, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11(1), 19–34 (2012)CrossRef Christophy, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11(1), 19–34 (2012)CrossRef
11.
go back to reference Dreischarf, M., Zander, T., Shirazi-Adl, A., Puttlitz, C., Adam, C., Chen, C., Goel, V., Kiapour, A., Kim, Y., Labus, K., et al.: Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J. Biomech. 47(8), 1757–1766 (2014)CrossRef Dreischarf, M., Zander, T., Shirazi-Adl, A., Puttlitz, C., Adam, C., Chen, C., Goel, V., Kiapour, A., Kim, Y., Labus, K., et al.: Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J. Biomech. 47(8), 1757–1766 (2014)CrossRef
12.
go back to reference Dreischarf, M., Shirazi-Adl, A., Arjmand, N., Rohlmann, A., Schmidt, H.: Estimation of loads on human lumbar spine: a review of in vivo and computational model studies. J. Biomech. 49(6), 833–845 (2016)CrossRef Dreischarf, M., Shirazi-Adl, A., Arjmand, N., Rohlmann, A., Schmidt, H.: Estimation of loads on human lumbar spine: a review of in vivo and computational model studies. J. Biomech. 49(6), 833–845 (2016)CrossRef
13.
go back to reference Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22(2), 131–154 (2007)CrossRef Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22(2), 131–154 (2007)CrossRef
14.
go back to reference Fice, J.B., Cronin, D.S., Panzer, M.B.: Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39(8), 2152–2162 (2011)CrossRef Fice, J.B., Cronin, D.S., Panzer, M.B.: Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39(8), 2152–2162 (2011)CrossRef
15.
go back to reference Gareis, H., Moshe, S., Baratta, R., Best, R., D’Ambrosia, R.: The isometric length-force models of nine different skeletal muscles. J. Biomech. 25(8), 903–916 (1992)CrossRef Gareis, H., Moshe, S., Baratta, R., Best, R., D’Ambrosia, R.: The isometric length-force models of nine different skeletal muscles. J. Biomech. 25(8), 903–916 (1992)CrossRef
16.
go back to reference Glowinski, S., Krzyzynski, T., Pecolt, S., Maciejewski, I.: Design of motion trajectory of an arm exoskeleton. Arch. Appl. Mech. 85(1), 75–87 (2015)CrossRef Glowinski, S., Krzyzynski, T., Pecolt, S., Maciejewski, I.: Design of motion trajectory of an arm exoskeleton. Arch. Appl. Mech. 85(1), 75–87 (2015)CrossRef
17.
go back to reference Granata, K.P., Marras, W.: An EMG-assisted model of trunk loading during free-dynamic lifting. J. Biomech. 28(11), 1309–1317 (1995)CrossRef Granata, K.P., Marras, W.: An EMG-assisted model of trunk loading during free-dynamic lifting. J. Biomech. 28(11), 1309–1317 (1995)CrossRef
18.
go back to reference Han, K.S., Zander, T., Taylor, W.R., Rohlmann, A.: An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med. Eng. & Phys. 34(6), 709–716 (2012)CrossRef Han, K.S., Zander, T., Taylor, W.R., Rohlmann, A.: An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med. Eng. & Phys. 34(6), 709–716 (2012)CrossRef
19.
go back to reference Harrington, T.A., Thomas, E.L., Frost, G., Modi, N., Bell, J.D.: Distribution of adipose tissue in the newborn. Pediatr. Res. 55(3), 437–441 (2004)CrossRef Harrington, T.A., Thomas, E.L., Frost, G., Modi, N., Bell, J.D.: Distribution of adipose tissue in the newborn. Pediatr. Res. 55(3), 437–441 (2004)CrossRef
20.
21.
go back to reference Honegger, J.D., Actis, J.A., Gates, D.H., Silverman, A.K., Munson, A.H., Petrella, A.J.: Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand. Biomech. Model. Mechanobiol. 20(1), 339–358 (2021)CrossRef Honegger, J.D., Actis, J.A., Gates, D.H., Silverman, A.K., Munson, A.H., Petrella, A.J.: Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand. Biomech. Model. Mechanobiol. 20(1), 339–358 (2021)CrossRef
23.
go back to reference Inman DJ (2006) Vibration with control. Wiley Online Library Inman DJ (2006) Vibration with control. Wiley Online Library
24.
go back to reference Jalalian, A., Gibson, I., Tay, E.H.: Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deformity 1(6), 401–411 (2013)CrossRef Jalalian, A., Gibson, I., Tay, E.H.: Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deformity 1(6), 401–411 (2013)CrossRef
25.
go back to reference Keller, T.S., Colloca, C.J.: A rigid body model of the dynamic posteroanterior motion response of the human lumbar spine. J.Manipul. Pysiol. Therapeut. 25(8), 485–496 (2002)CrossRef Keller, T.S., Colloca, C.J.: A rigid body model of the dynamic posteroanterior motion response of the human lumbar spine. J.Manipul. Pysiol. Therapeut. 25(8), 485–496 (2002)CrossRef
26.
go back to reference Lafage, V., Dubousset, J., Lavaste, F., Skalli, W.: 3D finite element simulation of cotrel-dubousset correction. Comp. Aid. Surg. 9(1–2), 17–25 (2004)CrossRef Lafage, V., Dubousset, J., Lavaste, F., Skalli, W.: 3D finite element simulation of cotrel-dubousset correction. Comp. Aid. Surg. 9(1–2), 17–25 (2004)CrossRef
27.
go back to reference Marras, W.S., Granata, K.P.: The development of an emg-assisted model to assess spine loading during whole-body free-dynamic lifting. J. Electromyogr. Kinesiol. 7(4), 259–268 (1997)CrossRef Marras, W.S., Granata, K.P.: The development of an emg-assisted model to assess spine loading during whole-body free-dynamic lifting. J. Electromyogr. Kinesiol. 7(4), 259–268 (1997)CrossRef
29.
go back to reference Mehrez, S., Smaoui, H., Ben Salah, F.Z.: A biomechanical model to simulate the effect of a high vertical loading on trunk flexural stiffness. Comp. Meth. Biomech. Biomed. Eng. 17(9), 1032–1041 (2014)CrossRef Mehrez, S., Smaoui, H., Ben Salah, F.Z.: A biomechanical model to simulate the effect of a high vertical loading on trunk flexural stiffness. Comp. Meth. Biomech. Biomed. Eng. 17(9), 1032–1041 (2014)CrossRef
30.
go back to reference Meirovitch, L.: Fundamentals of vibrations. Waveland Press, Illinois (2010) Meirovitch, L.: Fundamentals of vibrations. Waveland Press, Illinois (2010)
31.
go back to reference Méndez, J.: Density and composition of mammalian muscle. Metabolism 9, 184–188 (1960) Méndez, J.: Density and composition of mammalian muscle. Metabolism 9, 184–188 (1960)
32.
go back to reference Moalla F, Mehrez S, Najar F (2018) Dynamic identification of human trunk behavior as a diagnosis tool for pathologic problems. In: 2018 IEEE 4th Middle east conference on biomedical engineering (MECBME), IEEE, pp 51–55 Moalla F, Mehrez S, Najar F (2018) Dynamic identification of human trunk behavior as a diagnosis tool for pathologic problems. In: 2018 IEEE 4th Middle east conference on biomedical engineering (MECBME), IEEE, pp 51–55
33.
go back to reference Moorhouse, K.M., Granata, K.P.: Trunk stiffness and dynamics during active extension exertions. J. Biomech. 38(10), 2000–2007 (2005)CrossRef Moorhouse, K.M., Granata, K.P.: Trunk stiffness and dynamics during active extension exertions. J. Biomech. 38(10), 2000–2007 (2005)CrossRef
34.
go back to reference Phillips, S., Mercer, S., Bogduk, N.: Anatomy and biomechanics of quadratus lumborum. Proceed. Institut. Mech. Eng., Part H: J. Eng. Med. 222(2), 151–159 (2008)CrossRef Phillips, S., Mercer, S., Bogduk, N.: Anatomy and biomechanics of quadratus lumborum. Proceed. Institut. Mech. Eng., Part H: J. Eng. Med. 222(2), 151–159 (2008)CrossRef
37.
go back to reference Rupp, T., Ehlers, W., Karajan, N., Günther, M., Schmitt, S.: A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomech. Model. Mechanobiol. 14(5), 1081–1105 (2015)CrossRef Rupp, T., Ehlers, W., Karajan, N., Günther, M., Schmitt, S.: A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomech. Model. Mechanobiol. 14(5), 1081–1105 (2015)CrossRef
38.
go back to reference Schmidt, H., Bashkuev, M., Dreischarf, M., Rohlmann, A., Duda, G., Wilke, H.J., Shirazi-Adl, A.: Computational biomechanics of a lumbar motion segment in pure and combined shear loads. J. Biomech. 46(14), 2513–2521 (2013)CrossRef Schmidt, H., Bashkuev, M., Dreischarf, M., Rohlmann, A., Duda, G., Wilke, H.J., Shirazi-Adl, A.: Computational biomechanics of a lumbar motion segment in pure and combined shear loads. J. Biomech. 46(14), 2513–2521 (2013)CrossRef
39.
go back to reference Stokes, I.A., Gardner-Morse, M.: Quantitative anatomy of the lumbar musculature. J. Biomech. 32(3), 311–316 (1999)CrossRef Stokes, I.A., Gardner-Morse, M.: Quantitative anatomy of the lumbar musculature. J. Biomech. 32(3), 311–316 (1999)CrossRef
41.
go back to reference Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989) Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)
Metadata
Title
Multi-body musculoskeletal dynamic model of the human trunk based on an experimental approach
Authors
F. Moalla
S. Mehrez
F. Najar
Publication date
21-11-2022
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 3/2023
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-022-02323-x

Other articles of this Issue 3/2023

Archive of Applied Mechanics 3/2023 Go to the issue

Premium Partners