Skip to main content
Top

2021 | OriginalPaper | Chapter

3. Multi Cohort Intelligence Algorithm

Authors : Apoorva Shastri, Aniket Nargundkar, Anand J. Kulkarni

Published in: Socio-Inspired Optimization Methods for Advanced Manufacturing Processes

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multi-Cohort Intelligence (Multi-CI) algorithm has been proposed by Shastri and Kulkarni in [14]. The algorithm implements intra-group and inter-group learning mechanisms. It focuses on the interaction amongst different cohorts. The performance of the algorithm was validated by solving 75 unconstrained test problems with dimensions up to 30.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144MathSciNetMATH Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144MathSciNetMATH
2.
go back to reference Geem ZW, Kim JH, Loganathan GV (2001) A new heuristicoptimization algorithm: harmony search. Simulation 76(2):60–68 Geem ZW, Kim JH, Loganathan GV (2001) A new heuristicoptimization algorithm: harmony search. Simulation 76(2):60–68
3.
go back to reference Igel C, Hansen N, Roth S (2007) Covariance matrix adaptationfor multi-objective optimization. Evol Comput 15(1):1–28 Igel C, Hansen N, Roth S (2007) Covariance matrix adaptationfor multi-objective optimization. Evol Comput 15(1):1–28
4.
go back to reference Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132MathSciNetMATH Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132MathSciNetMATH
5.
go back to reference Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471MathSciNetMATH Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471MathSciNetMATH
6.
go back to reference Kulkarni AJ, Baki MF, Chaouch BA (2016) Application of the cohort-intelligence optimization method to three selected combinatorial optimization problems. Eur J Oper Res 250(2):427–447MathSciNetMATH Kulkarni AJ, Baki MF, Chaouch BA (2016) Application of the cohort-intelligence optimization method to three selected combinatorial optimization problems. Eur J Oper Res 250(2):427–447MathSciNetMATH
7.
go back to reference Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence: a self-supervised learning behavior. In IEEE international conference on systems, man, and cybernetics (SMC). pp 1396–1400 Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence: a self-supervised learning behavior. In IEEE international conference on systems, man, and cybernetics (SMC). pp 1396–1400
8.
go back to reference Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evolut Comput 16(2):210–224 Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evolut Comput 16(2):210–224
9.
go back to reference Liu L, Zhong WM, Qian F (2010) An improved chaos-particle swarm optimization algorithm. J East China Univ Sci Technol (Natural Science Edition) 36:267–272 Liu L, Zhong WM, Qian F (2010) An improved chaos-particle swarm optimization algorithm. J East China Univ Sci Technol (Natural Science Edition) 36:267–272
10.
go back to reference Murugan R, Mohan MR (2012) Modified artificial bee colony algorithm for solving economic dispatch problem. ARPN J Eng ApplSci 7(10):1353–1366 Murugan R, Mohan MR (2012) Modified artificial bee colony algorithm for solving economic dispatch problem. ARPN J Eng ApplSci 7(10):1353–1366
12.
go back to reference Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. IEEE Trans Evolut Comput 1(3):1785–1791 Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. IEEE Trans Evolut Comput 1(3):1785–1791
13.
go back to reference Selvi V, Umarani R (2010) Comparative analysis of ant colony and particle swarm optimization techniques. Int J Comput Appl 5(4):975–8887 Selvi V, Umarani R (2010) Comparative analysis of ant colony and particle swarm optimization techniques. Int J Comput Appl 5(4):975–8887
14.
go back to reference Shastri AS, Kulkarni AJ (2018) Multi-cohort intelligence algorithm: an intra-and inter-group learning behaviour based socio-inspired optimization methodology. Int J Parallel Emergent Distrib Syst 33(6):675–715 Shastri AS, Kulkarni AJ (2018) Multi-cohort intelligence algorithm: an intra-and inter-group learning behaviour based socio-inspired optimization methodology. Int J Parallel Emergent Distrib Syst 33(6):675–715
16.
go back to reference Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359 Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359
17.
go back to reference Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria forthe CEC 2005 special session on real-parameter optimization. Technical Report 1–50 Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria forthe CEC 2005 special session on real-parameter optimization. Technical Report 1–50
Metadata
Title
Multi Cohort Intelligence Algorithm
Authors
Apoorva Shastri
Aniket Nargundkar
Anand J. Kulkarni
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7797-0_3

Premium Partners