Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 2/2018

26-03-2018 | Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Multi-element substituted hydroxyapatites: synthesis, structural characteristics and evaluation of their bioactivity, cell viability, and antibacterial activity

Authors: Abinaya Rajendran, Subha Balakrishnan, Ravichandran Kulandaivelu, Sankara Narayanan T. S. Nellaiappan

Published in: Journal of Sol-Gel Science and Technology | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Synthesis of unsubstituted and multi-element (magnesium, zinc and cobalt) substituted hydroxyapatites (HAP) with varying stoichiometric compositions and evaluation of their morphological and structural characteristics, degree of crystallinity, bioactivity, cytotoxicity and antibacterial activity are addressed. The morphological features are not altered much following the substitution of Mg2+, Zn2+, and Co2+ in the HAP lattice. Nevertheless, their substitution exerts a strong influence on the structural characteristics HAP. Rietveld refinement analysis of the X-ray diffraction patterns indicates a decrease in crystallinity and mineralogical composition of HAP phase, which is accompanied with an increase of β-tricalcium phosphate (β-TCP) phase along with Co3O4 phase. Broadening of the PO43− peaks and a decrease in intensity of the OH peak are observed by Fourier-transform infrared spectra. A decrease in intensity, broadening and a slight shift in Raman band (at 961 cm−1 for HAP) towards the lower side suggest the incorporation of Mg, Zn, and Co, disordering of the crystal structure of HAP and formation of β-TCP as additional phase besides HAP. The MgZnCo-HAP’s exhibits a better bioactivity, cell viability and anti-bacterial activity than the unsubstituted HAP. However, a decrease in cell viability and anti-bacterial activity are observed when the stoichiometric ratio of the substituent elements is relatively higher.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Mucalo M (ed) (2015) Hydroxyapatite (HAp) for biomedical applications, woodhead publishing series in biomaterials. Elsevier-Woodhead Publishers, Cambridge Mucalo M (ed) (2015) Hydroxyapatite (HAp) for biomedical applications, woodhead publishing series in biomaterials. Elsevier-Woodhead Publishers, Cambridge
2.
go back to reference Dorozhkin SV (2010) Bioceramics of calcium orthophosphates Biomaterials 31:1465–1485CrossRef Dorozhkin SV (2010) Bioceramics of calcium orthophosphates Biomaterials 31:1465–1485CrossRef
3.
go back to reference Dorozhkin SV (2012) Calcium orthophosphates: applications in Nature, Biology, and Medicine. Pan Stanford Publishing, Singapore Dorozhkin SV (2012) Calcium orthophosphates: applications in Nature, Biology, and Medicine. Pan Stanford Publishing, Singapore
4.
go back to reference Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRef Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRef
5.
go back to reference Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C (2013) Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater 59:1–46CrossRef Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C (2013) Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater 59:1–46CrossRef
6.
go back to reference Feng W, Mu-sen L, Yu-peng L, Yong-xin Q (2005) A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 59:916–919CrossRef Feng W, Mu-sen L, Yu-peng L, Yong-xin Q (2005) A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 59:916–919CrossRef
7.
go back to reference Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett 61:3978–3983CrossRef Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett 61:3978–3983CrossRef
8.
go back to reference Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347CrossRef Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347CrossRef
9.
go back to reference Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894CrossRef Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894CrossRef
10.
go back to reference Cacciotti I (2015) Cationic and anionic substitutions in hydroxyapatite. In: Antoniac IV (ed) Handbook of bioceramics and biocomposites. Springer International Publishing, Switzerland, p 1–68 Cacciotti I (2015) Cationic and anionic substitutions in hydroxyapatite. In: Antoniac IV (ed) Handbook of bioceramics and biocomposites. Springer International Publishing, Switzerland, p 1–68
11.
go back to reference Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231CrossRef Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231CrossRef
12.
go back to reference Percival M (1999) Bone health and osteoporosis. Appl Nutr Sci Rep 5:1–6 Percival M (1999) Bone health and osteoporosis. Appl Nutr Sci Rep 5:1–6
13.
go back to reference Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res 10:453–457CrossRef Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res 10:453–457CrossRef
14.
go back to reference Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135CrossRef Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135CrossRef
15.
go back to reference Aina V, Lusvardi G, Annaz B, Gibson IR, Imrie FE, Malavasi G, Menabue L, Cerrato G, Martra G (2012) Magnesium and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med 23:2867–2879CrossRef Aina V, Lusvardi G, Annaz B, Gibson IR, Imrie FE, Malavasi G, Menabue L, Cerrato G, Martra G (2012) Magnesium and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med 23:2867–2879CrossRef
16.
go back to reference Cox SC, Jamshidi P, Grover LM, Mallick KK (2014) Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C35:106–114CrossRef Cox SC, Jamshidi P, Grover LM, Mallick KK (2014) Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C35:106–114CrossRef
17.
go back to reference Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49:69–78CrossRef Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49:69–78CrossRef
18.
go back to reference Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247CrossRef Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247CrossRef
19.
go back to reference Batra U, Kapoor S, Sharma S (2013) Influence of magnesium ion substitution on structural and thermal behavior of nanodimensional hydroxyapatite. J Mater Eng Perform 22:1798–1806CrossRef Batra U, Kapoor S, Sharma S (2013) Influence of magnesium ion substitution on structural and thermal behavior of nanodimensional hydroxyapatite. J Mater Eng Perform 22:1798–1806CrossRef
20.
go back to reference Cacciotti I, Bianco A, Lombardi M, Montanaro L (2009) Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc 29:2969–2978CrossRef Cacciotti I, Bianco A, Lombardi M, Montanaro L (2009) Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc 29:2969–2978CrossRef
21.
go back to reference Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M (2013) Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci Mater Med 24:437–445CrossRef Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M (2013) Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci Mater Med 24:437–445CrossRef
22.
go back to reference Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1995) Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem 58:49–58CrossRef Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1995) Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem 58:49–58CrossRef
23.
go back to reference Guerra-Lopez JR, Echeverria GA, Guida JA, Vina R, Punte G (2015) Synthetic hydroxyapatite doped with Zn(II) studied by X-Ray diffraction, infrared, Raman and thermal analysis. J Phys Chem Solids 81:57–65CrossRef Guerra-Lopez JR, Echeverria GA, Guida JA, Vina R, Punte G (2015) Synthetic hydroxyapatite doped with Zn(II) studied by X-Ray diffraction, infrared, Raman and thermal analysis. J Phys Chem Solids 81:57–65CrossRef
24.
go back to reference Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ (2009) Zinc incorporation into hydroxylapatite. Biomaterials 30:2864–2872CrossRef Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ (2009) Zinc incorporation into hydroxylapatite. Biomaterials 30:2864–2872CrossRef
25.
go back to reference Stanic′ V, Dimitrijevic′ S, Antic′-Stankovic′ J, Mitric′ M, Jokic′ B, Plec′aš I, Raičevic′ S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256:6083–6089CrossRef Stanic′ V, Dimitrijevic′ S, Antic′-Stankovic′ J, Mitric′ M, Jokic′ B, Plec′aš I, Raičevic′ S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256:6083–6089CrossRef
26.
go back to reference Miyaji F, Kono Y, Suyama Y (2005) Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull 40:209–220CrossRef Miyaji F, Kono Y, Suyama Y (2005) Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull 40:209–220CrossRef
27.
go back to reference Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5:3141–3149CrossRef Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5:3141–3149CrossRef
28.
go back to reference Tank KP, Chudasama KS, Thaker VS, Joshi MJ (2013) Cobalt-doped nano hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J Nanopart Res 15:1644CrossRef Tank KP, Chudasama KS, Thaker VS, Joshi MJ (2013) Cobalt-doped nano hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J Nanopart Res 15:1644CrossRef
29.
go back to reference Stojanovic Z, Veselinovic L, Markovic S, Ignjatovic N, Uskokovic D (2009) Hydrothermal synthesis of nanosized pure and cobalt-exchanged hydroxyapatite. Mater Manuf Process 24:1096–1103CrossRef Stojanovic Z, Veselinovic L, Markovic S, Ignjatovic N, Uskokovic D (2009) Hydrothermal synthesis of nanosized pure and cobalt-exchanged hydroxyapatite. Mater Manuf Process 24:1096–1103CrossRef
30.
go back to reference Kramer E, Itzkowitz E, Wei M (2014) Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceram Int 40:13471–13480CrossRef Kramer E, Itzkowitz E, Wei M (2014) Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceram Int 40:13471–13480CrossRef
31.
go back to reference Kulanthaivel S, Roy B, Agarwal T, Giri S, Pramanik K, Pal K, Ray SS, Maiti TK, Banerjee I (2016) Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater Sci Eng C58:648–658CrossRef Kulanthaivel S, Roy B, Agarwal T, Giri S, Pramanik K, Pal K, Ray SS, Maiti TK, Banerjee I (2016) Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater Sci Eng C58:648–658CrossRef
32.
go back to reference Ignjatović N, Ajduković Z, Savić V, Najman S, Mihailović D, Vasiljević P, Stojanović Z, Uskoković V, Uskoković D (2013) Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J Mater Sci Mater Med 24:343–354CrossRef Ignjatović N, Ajduković Z, Savić V, Najman S, Mihailović D, Vasiljević P, Stojanović Z, Uskoković V, Uskoković D (2013) Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J Mater Sci Mater Med 24:343–354CrossRef
33.
go back to reference Moreira MP, Soares GDA, Dentzer J, Anselme K, Sena LÁ, Kuznetsov A, Santos EA (2016) Synthesis of magnesium and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater Sci Eng C61:736–743CrossRef Moreira MP, Soares GDA, Dentzer J, Anselme K, Sena LÁ, Kuznetsov A, Santos EA (2016) Synthesis of magnesium and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater Sci Eng C61:736–743CrossRef
34.
go back to reference Iqbal N, Kadir MRA, Mahmood NH, Salim N, Froemming GRA, Balaji HR, Kamarul T (2014) Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int 40:4507–4513CrossRef Iqbal N, Kadir MRA, Mahmood NH, Salim N, Froemming GRA, Balaji HR, Kamarul T (2014) Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int 40:4507–4513CrossRef
35.
go back to reference Lowry N, Han Y, Meenan BJ, Boyd AR (2017) Strontium and zinc co-substituted nanophase hydroxyapatite. Ceram Int 43:12070–12078CrossRef Lowry N, Han Y, Meenan BJ, Boyd AR (2017) Strontium and zinc co-substituted nanophase hydroxyapatite. Ceram Int 43:12070–12078CrossRef
36.
go back to reference Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR (2017) The deposition of strontium and zinc co-substituted hydroxyapatite coatings. J Mater Sci Mater Med 29:51CrossRef Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR (2017) The deposition of strontium and zinc co-substituted hydroxyapatite coatings. J Mater Sci Mater Med 29:51CrossRef
37.
go back to reference Kulanthaivel S, Mishra U, Agarwal T, Giri S, Pal K, Pramanik K, Banerjee I (2015) Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion. Ceram Int 41:11323–11333CrossRef Kulanthaivel S, Mishra U, Agarwal T, Giri S, Pal K, Pramanik K, Banerjee I (2015) Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion. Ceram Int 41:11323–11333CrossRef
38.
go back to reference Kolmas J, Jaklewicz A, Zima A, Buc′ko M, Paszkiewicz Z, Lis J, Lósarczyk S ́ (2011) Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties J Mol Struct 987:40–50CrossRef Kolmas J, Jaklewicz A, Zima A, Buc′ko M, Paszkiewicz Z, Lis J, Lósarczyk S ́ (2011) Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties J Mol Struct 987:40–50CrossRef
39.
go back to reference Suresh Kumar G, Thamizhavel A, Yokogawa Y, Narayana Kalkura S, Girija EK (2012) Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater Chem Phys 134:1127–1135CrossRef Suresh Kumar G, Thamizhavel A, Yokogawa Y, Narayana Kalkura S, Girija EK (2012) Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater Chem Phys 134:1127–1135CrossRef
40.
go back to reference Gomes S, Vichery C, Descamps S, Martinez H, Kaur A, Jacobs A, Nedelec JM, Renaudin G (2018) Copper doping of calcium phosphate bioceramics from mechanism to the control of cytotoxicity. Acta Biommaterialia 65:465–474 Gomes S, Vichery C, Descamps S, Martinez H, Kaur A, Jacobs A, Nedelec JM, Renaudin G (2018) Copper doping of calcium phosphate bioceramics from mechanism to the control of cytotoxicity. Acta Biommaterialia 65:465–474
41.
go back to reference Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass ceramic A-W3. J Biomed Mater Res 24:721–734CrossRef Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass ceramic A-W3. J Biomed Mater Res 24:721–734CrossRef
42.
go back to reference Esakkirajan M, Prabhu NM, Arulvasu C, Beulaja M, Manikandan R, Thiagarajan R, Govindarajan K, Prabhu D, Dinesh D, Babu G, Dhanasekaran G (2014) Anti-proliferative effect of a compound isolated from Cassia auriculate against human colon cancer cell line HCT 15. Spectrochim Acta Part A 120:462–466CrossRef Esakkirajan M, Prabhu NM, Arulvasu C, Beulaja M, Manikandan R, Thiagarajan R, Govindarajan K, Prabhu D, Dinesh D, Babu G, Dhanasekaran G (2014) Anti-proliferative effect of a compound isolated from Cassia auriculate against human colon cancer cell line HCT 15. Spectrochim Acta Part A 120:462–466CrossRef
43.
go back to reference Elkabouss K, Kacimi M, Ziad M, Ammar S, Bozon-Veduraz F (2004) Cobalt-exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J Catal 226:16–24CrossRef Elkabouss K, Kacimi M, Ziad M, Ammar S, Bozon-Veduraz F (2004) Cobalt-exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J Catal 226:16–24CrossRef
44.
go back to reference Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci 11:2027–2035CrossRef Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci 11:2027–2035CrossRef
45.
go back to reference Li MO, Xiao XF, Liu RF, Chen CY, Huang LZ (2008) Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci Mater Med 19:797–803CrossRef Li MO, Xiao XF, Liu RF, Chen CY, Huang LZ (2008) Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci Mater Med 19:797–803CrossRef
46.
go back to reference Shepherd D, Best SM (2013) Production of zinc substituted hydroxyapatite using various precipitation routes. Biomed Mater 8:025003CrossRef Shepherd D, Best SM (2013) Production of zinc substituted hydroxyapatite using various precipitation routes. Biomed Mater 8:025003CrossRef
47.
go back to reference Lorenzo LMR, Regi MV (2000) Controlled crystallization of calcium phosphate apatites. Chem Mater 12:2460–2465CrossRef Lorenzo LMR, Regi MV (2000) Controlled crystallization of calcium phosphate apatites. Chem Mater 12:2460–2465CrossRef
48.
go back to reference Gomes S, Renaudin G, Jallot E, Nedelec JM (2009) Structural characterization and biological fluid interaction of sol-gel derived Mg substituted biphasic phosphate ceramic. App Mater Interface 1(2):505–513CrossRef Gomes S, Renaudin G, Jallot E, Nedelec JM (2009) Structural characterization and biological fluid interaction of sol-gel derived Mg substituted biphasic phosphate ceramic. App Mater Interface 1(2):505–513CrossRef
49.
go back to reference Gomes S, Karur A, Nedelec JM, Renaudin G (2014) X-Ray absorption spectroscopy shining (synchrotron) light onto the insertion of Zn2+ in calcium phosphate ceramics and its influence on their behavior under biological conditions. J Mater Chem 2:536–545CrossRef Gomes S, Karur A, Nedelec JM, Renaudin G (2014) X-Ray absorption spectroscopy shining (synchrotron) light onto the insertion of Zn2+ in calcium phosphate ceramics and its influence on their behavior under biological conditions. J Mater Chem 2:536–545CrossRef
50.
go back to reference Gomes S, Karur A, Greneche JM, Nedelec JM, Renaudin G (2017) Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics. Acta Biomater 50:78–88CrossRef Gomes S, Karur A, Greneche JM, Nedelec JM, Renaudin G (2017) Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics. Acta Biomater 50:78–88CrossRef
51.
go back to reference Renaudin G, Gomes S, Nedelec JM (2017) First-row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study Mater 10(1):92CrossRef Renaudin G, Gomes S, Nedelec JM (2017) First-row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study Mater 10(1):92CrossRef
52.
go back to reference Gomes S, Nedelec JM, Jallot E, Sheptyakov D, Renaudin G (2011) Unexpected mechanism of Zn2+ insertion in calcium phosphate bioceramics. Chem Mater 23:3072–3085CrossRef Gomes S, Nedelec JM, Jallot E, Sheptyakov D, Renaudin G (2011) Unexpected mechanism of Zn2+ insertion in calcium phosphate bioceramics. Chem Mater 23:3072–3085CrossRef
53.
go back to reference Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054CrossRef Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054CrossRef
54.
go back to reference Yang Y, Perez-Amodio S, Barre‘ re-de Groot FYF, Everts V, van Blitterswijk CA, Habibovic P (2010) The effects of inorganic additives to calcium phosphate on in vitro behaviour of osteoblasts and osteoclasts. Biomaterials 31:2976–2989CrossRef Yang Y, Perez-Amodio S, Barre‘ re-de Groot FYF, Everts V, van Blitterswijk CA, Habibovic P (2010) The effects of inorganic additives to calcium phosphate on in vitro behaviour of osteoblasts and osteoclasts. Biomaterials 31:2976–2989CrossRef
55.
go back to reference Zilm ME, Chen L, Sharma V, McDannald A, Jain M, Ramprasad R, Wei M (2016) Hydroxyapatite substituted by transition metals: experiment and theory. Phys Chem Chem Phys 18:16457–16465CrossRef Zilm ME, Chen L, Sharma V, McDannald A, Jain M, Ramprasad R, Wei M (2016) Hydroxyapatite substituted by transition metals: experiment and theory. Phys Chem Chem Phys 18:16457–16465CrossRef
56.
go back to reference Penel G, Leroy G, Rey C, Bres E (1998) Micro Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481CrossRef Penel G, Leroy G, Rey C, Bres E (1998) Micro Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481CrossRef
57.
go back to reference Awonusi A, Morris M, Tecklenburg M (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52CrossRef Awonusi A, Morris M, Tecklenburg M (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52CrossRef
58.
go back to reference Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238CrossRef Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238CrossRef
59.
go back to reference Darimont GL, Gilbert B, Cloots R, Non-destructive R (2003) evaluation of crystallinity and chemical composition by Raman spectroscopy in hydroxyapatite-coated implants. Mater Lett 58:71–73CrossRef Darimont GL, Gilbert B, Cloots R, Non-destructive R (2003) evaluation of crystallinity and chemical composition by Raman spectroscopy in hydroxyapatite-coated implants. Mater Lett 58:71–73CrossRef
60.
go back to reference Aminzadeh A, Shahabi S, Walsh LJ (1999) Raman spectroscopic studies of CO2 laser-irradiated human dental enamel. Spectrochim Acta Part A 55:1303–1308CrossRef Aminzadeh A, Shahabi S, Walsh LJ (1999) Raman spectroscopic studies of CO2 laser-irradiated human dental enamel. Spectrochim Acta Part A 55:1303–1308CrossRef
61.
go back to reference Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26:4366–4373CrossRef Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26:4366–4373CrossRef
62.
go back to reference LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88CrossRef LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88CrossRef
63.
go back to reference Xue W, Liu X, Zheng X, Ding C (2005) Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J Biomed Mater Res A 74:553–561CrossRef Xue W, Liu X, Zheng X, Ding C (2005) Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J Biomed Mater Res A 74:553–561CrossRef
64.
go back to reference Ding Q, Zhang X, Huang Y, Yan Y, Pang X (2015) In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. J Mater Sci 50:189–202CrossRef Ding Q, Zhang X, Huang Y, Yan Y, Pang X (2015) In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. J Mater Sci 50:189–202CrossRef
65.
go back to reference Wang X, Ito A, Sogo Y, Li X, Oyane A (2010) Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomater 6:962–968CrossRef Wang X, Ito A, Sogo Y, Li X, Oyane A (2010) Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomater 6:962–968CrossRef
66.
go back to reference Ito A, Ojima K, Naito H, Ichinose N, Tateishi T (2000) Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 50:178–183CrossRef Ito A, Ojima K, Naito H, Ichinose N, Tateishi T (2000) Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 50:178–183CrossRef
67.
go back to reference Lu J, Wei J, Yan Y, Li H, Jia J, Wei S, Guo H, Xiao T, Liu C (2011) Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J Mater Sci Mater Med 22:607–615CrossRef Lu J, Wei J, Yan Y, Li H, Jia J, Wei S, Guo H, Xiao T, Liu C (2011) Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J Mater Sci Mater Med 22:607–615CrossRef
68.
go back to reference de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos Jr ES, de Sena LA, Rossi AM, Granjeiro JM (2011) Understanding the impact of divalent cation substitution on hydroxyapatite: An in vitro multiparametric study on biocompatibility. J Biomed Mater Res Part A 98A:351–358CrossRef de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos Jr ES, de Sena LA, Rossi AM, Granjeiro JM (2011) Understanding the impact of divalent cation substitution on hydroxyapatite: An in vitro multiparametric study on biocompatibility. J Biomed Mater Res Part A 98A:351–358CrossRef
69.
go back to reference Tin OM, Gopalakrishna V, Samsuddin AR, Al-Salihi KA, Shamsuria O (2007) Antibacterial property of locally produced hydroxyapatite. Arch Orofac Sci 2:41–44 Tin OM, Gopalakrishna V, Samsuddin AR, Al-Salihi KA, Shamsuria O (2007) Antibacterial property of locally produced hydroxyapatite. Arch Orofac Sci 2:41–44
70.
go back to reference Sahithi K, Swetha M, Prabaharan M, Moorthi A, Saranya N, Ramasamy K, Srinivasan N, Partridge NC, Selvamurugan N (2010) Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol 6:333–339CrossRef Sahithi K, Swetha M, Prabaharan M, Moorthi A, Saranya N, Ramasamy K, Srinivasan N, Partridge NC, Selvamurugan N (2010) Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol 6:333–339CrossRef
71.
go back to reference Kolmas J, Groszyk E, Kwiatkowska-Rozycka D (2014) Substituted hydroxyapatites with antibacterial properties BioMed, Res Int 123:1–15Article ID 178CrossRef Kolmas J, Groszyk E, Kwiatkowska-Rozycka D (2014) Substituted hydroxyapatites with antibacterial properties BioMed, Res Int 123:1–15Article ID 178CrossRef
72.
go back to reference Chung R, Hsieh M, Huang C, Perng L, Wen H, Chin T (2006) Antimicrobial effect and human gingival biocompatibility of hydroxyapatite sol-gel coatings. J Biomed Mater Res B 76B:169–178CrossRef Chung R, Hsieh M, Huang C, Perng L, Wen H, Chin T (2006) Antimicrobial effect and human gingival biocompatibility of hydroxyapatite sol-gel coatings. J Biomed Mater Res B 76B:169–178CrossRef
73.
go back to reference Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRef Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRef
Metadata
Title
Multi-element substituted hydroxyapatites: synthesis, structural characteristics and evaluation of their bioactivity, cell viability, and antibacterial activity
Authors
Abinaya Rajendran
Subha Balakrishnan
Ravichandran Kulandaivelu
Sankara Narayanan T. S. Nellaiappan
Publication date
26-03-2018
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 2/2018
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-018-4634-x

Other articles of this Issue 2/2018

Journal of Sol-Gel Science and Technology 2/2018 Go to the issue

Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

Investigation of electrocatalytic activity of nanostructure Ce-doped MnO x sol–gel coating deposited on porous Ti membrane electrode

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Sol–gel preparation of ZrC–ZrO2 composite microspheres using fructose as a carbon source

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Luminescent alumina-based aerogels modified with tris(8-hydroxyquinolinato)aluminum

Premium Partners