Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

18-06-2020 | Original Article | Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020

Multi-expert multi-criteria decision making based on the likelihoods of interval type-2 trapezoidal fuzzy preference relations

Journal:
International Journal of Machine Learning and Cybernetics > Issue 12/2020
Authors:
Sepehr Hendiani, Lisheng Jiang, Ebrahim Sharifi, Huchang Liao
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Interval type-2 trapezoidal fuzzy sets, as a particular form of interval type-2 fuzzy sets, can precisely characterize the subjective assessments and qualitative evaluations of a group of experts. In this paper, a novel likelihood-based interval type-2 trapezoidal fuzzy multi-expert multi-criteria decision-making approach is proposed. To do so, the concepts of likelihood-based performance index, likelihood-based comprehensive evaluation value, and signed distance-based evaluation value are adopted. The interval type-2 trapezoidal fuzzy Bonferroni aggregation operator is utilized to construct the likelihood-based interval type-2 trapezoidal fuzzy preference relations. Then, the consistent lower and upper likelihoods are adopted to enhance the efficiency of the group decision making framework. The proposed multi-expert decision making approach works well when there is high degree of fluctuations in the number of criteria and experts. The practicability and feasibility of the proposed approach are validated by applications to four cases. Several comparative analyses are conducted to authenticate the dominancy of the proposed method over conventional interval type-2 trapezoidal fuzzy multi-criteria decision-making approaches.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020 Go to the issue