Skip to main content
Top

2024 | OriginalPaper | Chapter

Multi-feature Subgraph Fusion with Text Knowledge on Citation Link Prediction

Authors : Ghaluh Indah Permata Sari, Hsing-Kuo Pao, Rudy Cahyadi Hario Pribadi, Mohammad Iqbal

Published in: Applied and Computational Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose multi-feature subgraph fusion neural networks to predict the citation links. We aim to refine the sparsity of the subgraph feature of citation links among articles. The proposed model fuses four features: subgraph of social network metrics, metadata article info, Word2Vec, and tf-IDF of the articles. Basically, we focus on the edge list feature level instead of the graph level since we can avoid the heavy computation for the adjacency matrix. However, we may neglect the similarity between articles in the text domain. Henceforth, we fuse with text knowledge from the articles, such as the corpus embedding and metadata of the articles. The proposed model was evaluated on a public dataset for link prediction. We can enjoy the proposed model performances by showing the ablation study on the fusion feature(s).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16). Association for Computing Machinery, pp. 855–864. New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939754 Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16). Association for Computing Machinery, pp. 855–864. New York, NY, USA (2016). https://​doi.​org/​10.​1145/​2939672.​2939754
6.
go back to reference Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’10). Association for Computing Machinery, pp. 243–252. New York, NY, USA (2010). https://doi.org/10.1145/1835804.1835837 Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’10). Association for Computing Machinery, pp. 243–252. New York, NY, USA (2010). https://​doi.​org/​10.​1145/​1835804.​1835837
8.
go back to reference Liu, Z., Lai, D., Li, C., Wang, M.: Feature fusion based subgraph classification for link prediction. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM ’20). Association for Computing Machinery, pp. 985-994. New York, NY, USA (2020). https://doi.org/10.1145/3340531.3411966 Liu, Z., Lai, D., Li, C., Wang, M.: Feature fusion based subgraph classification for link prediction. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM ’20). Association for Computing Machinery, pp. 985-994. New York, NY, USA (2020). https://​doi.​org/​10.​1145/​3340531.​3411966
9.
go back to reference Lovász, L.M.: Random Walks on Graphs: A Survey (2001) Lovász, L.M.: Random Walks on Graphs: A Survey (2001)
11.
go back to reference Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York, NY (1983) Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York, NY (1983)
Metadata
Title
Multi-feature Subgraph Fusion with Text Knowledge on Citation Link Prediction
Authors
Ghaluh Indah Permata Sari
Hsing-Kuo Pao
Rudy Cahyadi Hario Pribadi
Mohammad Iqbal
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2136-8_22

Premium Partners