Skip to main content
Top

2024 | OriginalPaper | Chapter

Multi-fidelity No-U-Turn Sampling

Authors : Kislaya Ravi, Tobias Neckel, Hans-Joachim Bungartz

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Markov Chain Monte Carlo (MCMC) methods often take many iterations to converge for highly correlated or high-dimensional target density functions. Methods such as Hamiltonian Monte Carlo (HMC) or No-U-Turn Sampling (NUTS) use the first-order derivative of the density function to tackle the aforementioned issues. However, the calculation of the derivative represents a bottleneck for computationally expensive models. We propose to first build a multi-fidelity Gaussian Process (GP) surrogate. The building block of the multi-fidelity surrogate is a hierarchy of models of decreasing approximation error and increasing computational cost. Then the generated multi-fidelity surrogate is used to approximate the derivative. The majority of the computation is assigned to the cheap models thereby reducing the overall computational cost. The derivative of the multi-fidelity method is used to explore the target density function and generate proposals. We select or reject the proposals using the Metropolis Hasting criterion using the highest fidelity model which ensures that the proposed method is ergodic with respect to the highest fidelity density function. We apply the proposed method to three test cases including some well-known benchmarks to compare it with existing methods and show that multi-fidelity No-U-turn sampling outperforms other methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kaipio, J., Somersalo, E.: Statistical and computational inverse problems. Springer Science and Business Media (2006) Kaipio, J., Somersalo, E.: Statistical and computational inverse problems. Springer Science and Business Media (2006)
2.
go back to reference Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953) Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)
3.
go back to reference Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–41 (1984)CrossRef Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–41 (1984)CrossRef
4.
go back to reference Neal, R.M.: MCMC using Hamiltonian dynamics. In: Handbook of Markov Chain Monte Carlo, vol. 2, Issue 11, pp. 2 (2011) Neal, R.M.: MCMC using Hamiltonian dynamics. In: Handbook of Markov Chain Monte Carlo, vol. 2, Issue 11, pp. 2 (2011)
5.
go back to reference Hoffman, M.D., Gelman, A.: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15(1), 1593–623 (2014)MathSciNet Hoffman, M.D., Gelman, A.: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15(1), 1593–623 (2014)MathSciNet
6.
go back to reference Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60(3), 550–91 (2018)MathSciNetCrossRef Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60(3), 550–91 (2018)MathSciNetCrossRef
7.
go back to reference Rasmussen, C.E.: Gaussian processes in machine learning. In: Summer School on Machine Learning, vol. 2, pp. 63–71. Springer, Berlin, Heidelberg (2003) Rasmussen, C.E.: Gaussian processes in machine learning. In: Summer School on Machine Learning, vol. 2, pp. 63–71. Springer, Berlin, Heidelberg (2003)
8.
go back to reference Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N.D., Karniadakis, G.E.: Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proc. R. Soc. Math. Phys. Eng. Sci. 473(2198), 20160751 (2017) Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N.D., Karniadakis, G.E.: Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proc. R. Soc. Math. Phys. Eng. Sci. 473(2198), 20160751 (2017)
9.
go back to reference Lee, S., Dietrich, F., Karniadakis, G.E., Kevrekidis, I.G.: Linking Gaussian process regression with data-driven manifold embeddings for nonlinear data fusion. Interface Focus. 9(3), 20180083 (2019)CrossRef Lee, S., Dietrich, F., Karniadakis, G.E., Kevrekidis, I.G.: Linking Gaussian process regression with data-driven manifold embeddings for nonlinear data fusion. Interface Focus. 9(3), 20180083 (2019)CrossRef
10.
go back to reference Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, pp. 49–52 (1902) Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, pp. 49–52 (1902)
11.
go back to reference Kennedy, M.C., O’Hagan, A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1), 1–3 (2000)MathSciNetCrossRef Kennedy, M.C., O’Hagan, A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1), 1–3 (2000)MathSciNetCrossRef
12.
go back to reference Christen, J.A., Fox, C.: Markov chain Monte Carlo using an approximation. J. Comput. Graph. Stat. 14(4), 795–810 (2005)MathSciNetCrossRef Christen, J.A., Fox, C.: Markov chain Monte Carlo using an approximation. J. Comput. Graph. Stat. 14(4), 795–810 (2005)MathSciNetCrossRef
13.
14.
go back to reference Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J.M., Stuart, A.: Optimal tuning of the hybrid Monte Carlo algorithm. Bernoulli 19(5A), 1501–34 (2013)MathSciNetCrossRef Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J.M., Stuart, A.: Optimal tuning of the hybrid Monte Carlo algorithm. Bernoulli 19(5A), 1501–34 (2013)MathSciNetCrossRef
15.
16.
go back to reference Shahmoradi, A., Bagheri, F., Kumbhare, S.: Paramonte: Plain powerful parallel monte carlo library, vol. 65. Bulletin of the American Physical Society (2020) Shahmoradi, A., Bagheri, F., Kumbhare, S.: Paramonte: Plain powerful parallel monte carlo library, vol. 65. Bulletin of the American Physical Society (2020)
17.
go back to reference Dillon, J.V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman, M., Saurous, R.A.: Tensorflow distributions (2017). arXiv:1711.10604 Dillon, J.V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman, M., Saurous, R.A.: Tensorflow distributions (2017). arXiv:​1711.​10604
18.
go back to reference Vats, D., Flegal, J.M., Jones, G.L.: Multivariate output analysis for Markov chain Monte Carlo. Biometrika 106(2), 321–37 (2019)MathSciNetCrossRef Vats, D., Flegal, J.M., Jones, G.L.: Multivariate output analysis for Markov chain Monte Carlo. Biometrika 106(2), 321–37 (2019)MathSciNetCrossRef
19.
go back to reference Scroggs, M.W., Baratta, I.A., Richardson, C.N., Wells, G.N.: Basix: a runtime finite element basis evaluation library. J. Open Source Softw. 7(73), 3982 (2022)CrossRef Scroggs, M.W., Baratta, I.A., Richardson, C.N., Wells, G.N.: Basix: a runtime finite element basis evaluation library. J. Open Source Softw. 7(73), 3982 (2022)CrossRef
20.
go back to reference Tierney, L., Mira, A.: Some adaptive Monte Carlo methods for Bayesian inference. Stat. Med. 18(17–18), 2507–2515 (1999) Tierney, L., Mira, A.: Some adaptive Monte Carlo methods for Bayesian inference. Stat. Med. 18(17–18), 2507–2515 (1999)
Metadata
Title
Multi-fidelity No-U-Turn Sampling
Authors
Kislaya Ravi
Tobias Neckel
Hans-Joachim Bungartz
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_27

Premium Partner