Skip to main content
Top

2018 | OriginalPaper | Chapter

Multi-modal Disease Classification in Incomplete Datasets Using Geometric Matrix Completion

Authors : Gerome Vivar, Andreas Zwergal, Nassir Navab, Seyed-Ahmad Ahmadi

Published in: Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In large population-based studies and in clinical routine, tasks like disease diagnosis and progression prediction are inherently based on a rich set of multi-modal data, including imaging and other sensor data, clinical scores, phenotypes, labels and demographics. However, missing features, rater bias and inaccurate measurements are typical ailments of real-life medical datasets. Recently, it has been shown that deep learning with graph convolution neural networks (GCN) can outperform traditional machine learning in disease classification, but missing features remain an open problem. In this work, we follow up on the idea of modeling multi-modal disease classification as a matrix completion problem, with simultaneous classification and non-linear imputation of features. Compared to methods before, we arrange subjects in a graph-structure and solve classification through geometric matrix completion, which simulates a heat diffusion process that is learned and solved with a recurrent neural network. We demonstrate the potential of this method on the ADNI-based TADPOLE dataset and on the task of predicting the transition from MCI to Alzheimer’s disease. With an AUC of 0.950 and classification accuracy of 87%, our approach outperforms standard linear and non-linear classifiers, as well as several state-of-the-art results in related literature, including a recently proposed GCN-based approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bronstein, M.M., Bruna, J., Lecun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Sig. Process. Mag. 34(4), 18–42 (2017)CrossRef Bronstein, M.M., Bruna, J., Lecun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Sig. Process. Mag. 34(4), 18–42 (2017)CrossRef
2.
go back to reference Candes, E.J., Recht, B.: Exact low-rank matrix completion via convex optimization. In: 46th Annual Allerton Conference on Communication, Control, and Computing, pp 1–49 (2008) Candes, E.J., Recht, B.: Exact low-rank matrix completion via convex optimization. In: 46th Annual Allerton Conference on Communication, Control, and Computing, pp 1–49 (2008)
3.
go back to reference Candes, E.J., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)CrossRef Candes, E.J., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)CrossRef
4.
go back to reference Dong, Y., Peng, C.Y.: Principled missing data methods for researchers. Springerplus 2(1), 222 (2013)CrossRef Dong, Y., Peng, C.Y.: Principled missing data methods for researchers. Springerplus 2(1), 222 (2013)CrossRef
5.
go back to reference Goldberg, A., Recht, B., Xu, J., Nowak, R., Zhu, X.: Transduction with matrix completion: three birds with one stone. In: Advances in Neural Information Processing Systems (NIPS), pp. 757–765 (2010) Goldberg, A., Recht, B., Xu, J., Nowak, R., Zhu, X.: Transduction with matrix completion: three birds with one stone. In: Advances in Neural Information Processing Systems (NIPS), pp. 757–765 (2010)
8.
go back to reference Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
9.
go back to reference Monti, F., Bronstein, M.M., Bresson, X.: Geometric matrix completion with recurrent multi-graph neural networks. CoRR, arXiv:1704.06803 (2017) Monti, F., Bronstein, M.M., Bresson, X.: Geometric matrix completion with recurrent multi-graph neural networks. CoRR, arXiv:​1704.​06803 (2017)
10.
go back to reference Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 104, 398–412 (2015)CrossRef Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 104, 398–412 (2015)CrossRef
11.
go back to reference Oishi, K.: Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer’s disease. Front. Neurol. 2, 54 (2011)CrossRef Oishi, K.: Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer’s disease. Front. Neurol. 2, 54 (2011)CrossRef
13.
go back to reference Rao, N., Yu, H.-F., Ravikumar, P., Dhillon, I.S.: Collaborative filtering with graph information: consistency and scalable methods. In: Neural Information Processing Systems (NIPS), pp. 1–9 (2015) Rao, N., Yu, H.-F., Ravikumar, P., Dhillon, I.S.: Collaborative filtering with graph information: consistency and scalable methods. In: Neural Information Processing Systems (NIPS), pp. 1–9 (2015)
14.
go back to reference Srebro, N., Rennie, J.D.M., Jaakkola, T.S.: Maximum-margin matrix factorization. In: Advances in Neural Information Processing Systems (NIPS), pp. 17:1329–17:1336 (2005) Srebro, N., Rennie, J.D.M., Jaakkola, T.S.: Maximum-margin matrix factorization. In: Advances in Neural Information Processing Systems (NIPS), pp. 17:1329–17:1336 (2005)
15.
16.
go back to reference Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)CrossRef Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)CrossRef
Metadata
Title
Multi-modal Disease Classification in Incomplete Datasets Using Geometric Matrix Completion
Authors
Gerome Vivar
Andreas Zwergal
Nassir Navab
Seyed-Ahmad Ahmadi
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00689-1_3

Premium Partner