Skip to main content
Top

2024 | OriginalPaper | Chapter

Multi-objective Optimal Feature Selection for Cyber Security Integrated with Deep Learning

Authors : Anupam Das, Subhajit Chakrabarty

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cyber security in the context of big data has emerged as a critical issue and an upcoming challenge in the research community. The security problems in big data are handled using machine learning algorithms. In recent years, artificial intelligence has been an emerging technology that machine imitates human behaviors. The Intrusion Detection System (IDS) is the major component for the detection of malicious activities or cyber attacks. In intrusion detection, Artificial intelligence engages a major role widely, which is the better way of building and adapting IDS. Nowadays, Neural Network algorithms are promising techniques for framing the novel artificial intelligence, which is used for real-time problems. The proposed cyber security model uses a cyber defense dataset and a secured network is created based on multi-objective criteria. Here, the optimal feature selection is performed on the basis of a multi-objective function, which focuses on the correlation and accuracy of attack detection using a meta-heuristic algorithm called Beetle Swarm Optimization (BSO). Further, the deep learning model called Recurrent Neural Network (RNN) is used for detecting the attack. The multi-objective-based optimal feature selection is helpful for enhancing the performance of cyber security with reduced redundancy and complexity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kanimozhi, G.V., Prem Jacob, T.: Artificial Intelligence based network intrusion detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing. In: ICT Express, vol. 5, no. 3, pp. 211–214, September 2019 Kanimozhi, G.V., Prem Jacob, T.: Artificial Intelligence based network intrusion detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing. In: ICT Express, vol. 5, no. 3, pp. 211–214, September 2019
2.
go back to reference Khouzani, M.H.R., Liu, Z., Malacaria, P.: Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs. Eur. J. Oper. Res. 278, 894–903 (2019) Khouzani, M.H.R., Liu, Z., Malacaria, P.: Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs. Eur. J. Oper. Res. 278, 894–903 (2019)
3.
go back to reference Sabar, N.R., Yi, X., Song, A.: A bi-objective hyper-heuristic support vector machines for big data cyber-security. IEEE Access 6, 10421–10431 (2018) Sabar, N.R., Yi, X., Song, A.: A bi-objective hyper-heuristic support vector machines for big data cyber-security. IEEE Access 6, 10421–10431 (2018)
4.
go back to reference Lai, K., Illindala, M., Subramaniam, K.: A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment. Appl. Energy 235, 204–218 (2019) Lai, K., Illindala, M., Subramaniam, K.: A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment. Appl. Energy 235, 204–218 (2019)
5.
go back to reference Hamzeh, M., Vahidi, B., Nematollahi, A.F.: Optimizing configuration of cyber network considering graph theory structure and teaching–learning-based optimization (GT-TLBO). IEEE Trans. Indus. Inform. 15(4), 2083–2090 (2019) Hamzeh, M., Vahidi, B., Nematollahi, A.F.: Optimizing configuration of cyber network considering graph theory structure and teaching–learning-based optimization (GT-TLBO). IEEE Trans. Indus. Inform. 15(4), 2083–2090 (2019)
6.
go back to reference Almohri, H.M.J., Watson, L.T., Yao, D., Ou, X.: Security optimization of dynamic networks with probabilistic graph modelling and linear programming. IEEE Trans. Depend. Sec. Comput. 13(4), 474–487 (2016)CrossRef Almohri, H.M.J., Watson, L.T., Yao, D., Ou, X.: Security optimization of dynamic networks with probabilistic graph modelling and linear programming. IEEE Trans. Depend. Sec. Comput. 13(4), 474–487 (2016)CrossRef
7.
go back to reference Fielder, A., Panaousis, E., Malacaria, P., Hankin, C., Smeraldi, F.: Decision support approaches for cyber security investment. Decis. Support Syst. 86, 13–23 (2016) Fielder, A., Panaousis, E., Malacaria, P., Hankin, C., Smeraldi, F.: Decision support approaches for cyber security investment. Decis. Support Syst. 86, 13–23 (2016)
8.
go back to reference Homer, J., Ou, X.: SAT-solving approaches to context-aware enterprise network security management. IEEE J. Sel. Areas Commun. 27(3), 315–322 (2009)CrossRef Homer, J., Ou, X.: SAT-solving approaches to context-aware enterprise network security management. IEEE J. Sel. Areas Commun. 27(3), 315–322 (2009)CrossRef
9.
go back to reference Nandi, A.K., Medal, H.R., Vadlamani, S.: Interdicting attack graphs to protect organizations from cyber attacks: a bi-level defender-attacker model. Comput. Oper. Res. 75, 118–131 (2016) Nandi, A.K., Medal, H.R., Vadlamani, S.: Interdicting attack graphs to protect organizations from cyber attacks: a bi-level defender-attacker model. Comput. Oper. Res. 75, 118–131 (2016)
10.
go back to reference Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using Bayesian attack graphs. IEEE Trans. Depend. Sec. Comput. 9(1), 61–74 (2012)CrossRef Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using Bayesian attack graphs. IEEE Trans. Depend. Sec. Comput. 9(1), 61–74 (2012)CrossRef
11.
go back to reference Sommestad, T., Ekstedt, M., Holm, H.: The cyber security modeling language: a tool for assessing the vulnerability of enterprise system architectures. IEEE Syst. J. 7(3), 363–373 (2013)CrossRef Sommestad, T., Ekstedt, M., Holm, H.: The cyber security modeling language: a tool for assessing the vulnerability of enterprise system architectures. IEEE Syst. J. 7(3), 363–373 (2013)CrossRef
12.
go back to reference Dezaki, H.H., Agah, M.M., Abyaneh, H.A., Haeri, H.: Sensitivity analysis of smart grids reliability due to indirect cyber-power interdependencies under various DG technologies, DG penetrations, and operation times. Energy Convers. Manag. 108, 377–391 (2016)CrossRef Dezaki, H.H., Agah, M.M., Abyaneh, H.A., Haeri, H.: Sensitivity analysis of smart grids reliability due to indirect cyber-power interdependencies under various DG technologies, DG penetrations, and operation times. Energy Convers. Manag. 108, 377–391 (2016)CrossRef
13.
go back to reference Falahati, B., Fu, Y., Wu, L.: Reliability assessment of smart grid considering direct cyber-power interdependencies. IEEE Trans. Smart Grid 3(3), 1515–1524 (2012)CrossRef Falahati, B., Fu, Y., Wu, L.: Reliability assessment of smart grid considering direct cyber-power interdependencies. IEEE Trans. Smart Grid 3(3), 1515–1524 (2012)CrossRef
14.
go back to reference Dezaki, H.H., Abyaneh, H.A., Haeri, H.: Impacts of direct cyber-power interdependencies on smart grid reliability under various penetration levels of microturbine/wind/solar distributed generations. IET Gener. Transm. Distrib. 10, 928–937 (2016)CrossRef Dezaki, H.H., Abyaneh, H.A., Haeri, H.: Impacts of direct cyber-power interdependencies on smart grid reliability under various penetration levels of microturbine/wind/solar distributed generations. IET Gener. Transm. Distrib. 10, 928–937 (2016)CrossRef
15.
go back to reference Facchinetti, T., Della Vedova, M.L.: Real-time modeling for direct load control in cyber-physical power systems. In: IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 689–698, November 2011 Facchinetti, T., Della Vedova, M.L.: Real-time modeling for direct load control in cyber-physical power systems. In: IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 689–698, November 2011
16.
go back to reference Chen, T. Zhu, Y., Teng, J.: Beetle swarm optimisation for solving investment portfolio problems. J. Eng. 2018(16), 1600–1605 (2018) Chen, T. Zhu, Y., Teng, J.: Beetle swarm optimisation for solving investment portfolio problems. J. Eng. 2018(16), 1600–1605 (2018)
17.
go back to reference Li, F., Liu, M: A hybrid convolutional and recurrent neural network for hippocampus analysis in Alzheimer's disease. J. Neurosci. Methods 323, 108–118 (2019) Li, F., Liu, M: A hybrid convolutional and recurrent neural network for hippocampus analysis in Alzheimer's disease. J. Neurosci. Methods 323, 108–118 (2019)
18.
go back to reference Bonyadi, M.R., Michalewicz, Z.: Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 20(3), 370–385 (2016)CrossRef Bonyadi, M.R., Michalewicz, Z.: Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 20(3), 370–385 (2016)CrossRef
19.
go back to reference Wu, J., Yang, H.: Linear regression-based efficient svm learning for large-scale classification. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2357–2369 (2015)MathSciNetCrossRef Wu, J., Yang, H.: Linear regression-based efficient svm learning for large-scale classification. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2357–2369 (2015)MathSciNetCrossRef
20.
go back to reference Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1774–1785 (2018)MathSciNetCrossRef Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1774–1785 (2018)MathSciNetCrossRef
21.
go back to reference Niu, H., Bhowmick, C., Jagannathan, S.: Attack detection and approximation in nonlinear networked control systems using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 235–245 (2020)MathSciNetCrossRef Niu, H., Bhowmick, C., Jagannathan, S.: Attack detection and approximation in nonlinear networked control systems using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 235–245 (2020)MathSciNetCrossRef
22.
go back to reference Nancy, P. Muthurajkumar, S., Ganapathy, S., Santhosh Kumar, S.V.N., Selvi, M., Arputharaj, K.: Intrusion detection using dynamic feature selection and fuzzy temporal decision tree classification for wireless sensor networks. IET Commun. 14(5), 888–895 (2020) Nancy, P. Muthurajkumar, S., Ganapathy, S., Santhosh Kumar, S.V.N., Selvi, M., Arputharaj, K.: Intrusion detection using dynamic feature selection and fuzzy temporal decision tree classification for wireless sensor networks. IET Commun. 14(5), 888–895 (2020)
23.
go back to reference Joshi, A.S., Kulkarni, O., Kakandikar, G.M., Nandedkar, V.M.: Cuckoo search optimization—a review. Mater. Today: Proc. 4(8), 7262–7269 (2017) Joshi, A.S., Kulkarni, O., Kakandikar, G.M., Nandedkar, V.M.: Cuckoo search optimization—a review. Mater. Today: Proc. 4(8), 7262–7269 (2017)
Metadata
Title
Multi-objective Optimal Feature Selection for Cyber Security Integrated with Deep Learning
Authors
Anupam Das
Subhajit Chakrabarty
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_13