Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2023

16-03-2023

Multi-Objective Optimization of Geometrical Parameters of Composite Sandwich Panels with an Aluminum Honeycomb Core for an Improved Energy Absorption

Authors: A. Pandey, A. K. Upadhyay, K. K. Shukla

Published in: Mechanics of Composite Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The low-velocity impact response of aluminum honeycomb sandwich panels with composite face sheets is investigated using an LS-DYNA-based finite-element simulation. The finite-element model incorporates the damage, delamination, and failure capabilities, and a verification analysis of the results found. Suitable prediction models for the specific energy absorption and peak load at different values of geometrical parameters of the panels are developed using the response surface methodology. The effects of face sheet thickness, cell size, cell height, and cell thickness on the specific energy absorption and peak load are investigated. A multi-objective optimization of the panels is carried out for the maximum specific energy absorption and the minimum peak load.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference A. G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, and M. Langseth, “A numerical model for bird strike of aluminium foam-based sandwich panels,” Int. J. Impact Eng., 32, No. 7, 1127-1144, (2006).CrossRef A. G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, and M. Langseth, “A numerical model for bird strike of aluminium foam-based sandwich panels,” Int. J. Impact Eng., 32, No. 7, 1127-1144, (2006).CrossRef
2.
go back to reference K. Malekzadeh Fard, S. M. R. Khalili, S. H. Forooghy, and M. Hosseini, “Low velocity transverse impact response of a composite sandwich plate subjected to a rigid blunted cylindrical impactor,” Compos., Part B, 63, 111-122, (2014). K. Malekzadeh Fard, S. M. R. Khalili, S. H. Forooghy, and M. Hosseini, “Low velocity transverse impact response of a composite sandwich plate subjected to a rigid blunted cylindrical impactor,” Compos., Part B, 63, 111-122, (2014).
3.
go back to reference M. Garrido, J. F. A. Madeira, M. Proença, and J. R. Correia, “Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation,” Construction and Building Mater., 198, 465-478 (2019).CrossRef M. Garrido, J. F. A. Madeira, M. Proença, and J. R. Correia, “Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation,” Construction and Building Mater., 198, 465-478 (2019).CrossRef
4.
go back to reference V. Birman and G. A. Kardomateas, “Review of current trends in research and applications of sandwich structures,” Compos., Part B, 142, 221-240 (2018).CrossRef V. Birman and G. A. Kardomateas, “Review of current trends in research and applications of sandwich structures,” Compos., Part B, 142, 221-240 (2018).CrossRef
5.
go back to reference M. S. Hoo Fatt and D. Sirivolu, “Marine composite sandwich plates under air and water blasts,” Marine Struct., 56, 163-185 (2017). M. S. Hoo Fatt and D. Sirivolu, “Marine composite sandwich plates under air and water blasts,” Marine Struct., 56, 163-185 (2017).
6.
go back to reference M. Li, Z. Deng, R. Liu, and H. Guo, “Crashworthiness design optimisation of metal honeycomb energy absorber used in lunar lander,” Int. J. Crashworthiness, 16, 411-419, (2011).CrossRef M. Li, Z. Deng, R. Liu, and H. Guo, “Crashworthiness design optimisation of metal honeycomb energy absorber used in lunar lander,” Int. J. Crashworthiness, 16, 411-419, (2011).CrossRef
7.
go back to reference J. Paz, J. Díaz, L. Romera, and M. Costas, “Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures,” Compos. Struct., 133, 499-507 (2015).CrossRef J. Paz, J. Díaz, L. Romera, and M. Costas, “Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures,” Compos. Struct., 133, 499-507 (2015).CrossRef
8.
go back to reference S. X. Wang, L. Z. Wu, and L. Ma, “Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates,” Materials and Design, 31, 118-125 (2010).CrossRef S. X. Wang, L. Z. Wu, and L. Ma, “Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates,” Materials and Design, 31, 118-125 (2010).CrossRef
9.
go back to reference A. Dogan and V. Arikan, “Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites,” Compos., Part B, 127, 63-69 (2017).CrossRef A. Dogan and V. Arikan, “Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites,” Compos., Part B, 127, 63-69 (2017).CrossRef
10.
go back to reference C. C. Foo, G. B. Chai, and L. K. Seah, “A model to predict low-velocity impact response and damage in sandwich composites,” Compos. Sci. Technol., 68, 1348-1356 (2008).CrossRef C. C. Foo, G. B. Chai, and L. K. Seah, “A model to predict low-velocity impact response and damage in sandwich composites,” Compos. Sci. Technol., 68, 1348-1356 (2008).CrossRef
11.
go back to reference E. J. Herup and A. N. Palazotto, “Low-velocity impact damage initiation in graphite/epoxy/Nomex honeycomb-sandwich plates,” Compos. Sci. Technol., 57, 1581-1598 (1998).CrossRef E. J. Herup and A. N. Palazotto, “Low-velocity impact damage initiation in graphite/epoxy/Nomex honeycomb-sandwich plates,” Compos. Sci. Technol., 57, 1581-1598 (1998).CrossRef
12.
go back to reference T. Anderson and E. Madenci, “Experimental investigation of low-velocity impact characteristics of sandwich composites,” Compos. Struct., 50, 239-247 (2000).CrossRef T. Anderson and E. Madenci, “Experimental investigation of low-velocity impact characteristics of sandwich composites,” Compos. Struct., 50, 239-247 (2000).CrossRef
13.
go back to reference M. Akil Hazizan and W. J. Cantwell, “The low velocity impact response of an aluminium honeycomb sandwich structure,” Compos., Part B, 34, 679-687 (2003). M. Akil Hazizan and W. J. Cantwell, “The low velocity impact response of an aluminium honeycomb sandwich structure,” Compos., Part B, 34, 679-687 (2003).
14.
go back to reference W. He, L. Yao, X. Meng, G. Sun, D. Xie, and J. Liu, “Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets,” Thin-Walled Struct., 137, 411-432, (2019).CrossRef W. He, L. Yao, X. Meng, G. Sun, D. Xie, and J. Liu, “Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets,” Thin-Walled Struct., 137, 411-432, (2019).CrossRef
15.
go back to reference İ. Özen, K. Çava, H. Gedikli, Ü. Alver, and M. Aslan, “Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores,” Thin-Walled Struct., 156, 106989, (2020).CrossRef İ. Özen, K. Çava, H. Gedikli, Ü. Alver, and M. Aslan, “Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores,” Thin-Walled Struct., 156, 106989, (2020).CrossRef
16.
go back to reference H. Sun, F. Li, K. Shen, and K. Li, “Energy absorption of carbon-fiber-reinforced composite laminates under low-velocity impacts,” Mech. Compos. Mater., 56, 389-396, (2020).CrossRef H. Sun, F. Li, K. Shen, and K. Li, “Energy absorption of carbon-fiber-reinforced composite laminates under low-velocity impacts,” Mech. Compos. Mater., 56, 389-396, (2020).CrossRef
17.
go back to reference T. Özben and H. Şen, “Damage behavior of hybrid composite plates exposed to impacts at different energy levels,” Mech. Compos. Mater., 56, 361-366 (2020).CrossRef T. Özben and H. Şen, “Damage behavior of hybrid composite plates exposed to impacts at different energy levels,” Mech. Compos. Mater., 56, 361-366 (2020).CrossRef
18.
go back to reference C. Menna, A. Zinno, D. Asprone, and A. Prota, “Numerical assessment of the impact behavior of honeycomb sandwich structures,” Compos. Struct., 106, 326-339 (2013).CrossRef C. Menna, A. Zinno, D. Asprone, and A. Prota, “Numerical assessment of the impact behavior of honeycomb sandwich structures,” Compos. Struct., 106, 326-339 (2013).CrossRef
19.
go back to reference A. Kurşun, M. Şenel, H. M. Enginsoy, and E. Bayraktar, “Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling,” Compos., Part B, 86, 143-151 (2016).CrossRef A. Kurşun, M. Şenel, H. M. Enginsoy, and E. Bayraktar, “Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling,” Compos., Part B, 86, 143-151 (2016).CrossRef
20.
go back to reference Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, “Low-velocity impact response of composite sandwich structures: Modelling and experiment,” Compos. Struct., 168, 322-334 (2017).CrossRef Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, “Low-velocity impact response of composite sandwich structures: Modelling and experiment,” Compos. Struct., 168, 322-334 (2017).CrossRef
21.
go back to reference S. Hou, Q. Li, S. Long, X. Yang, and W. Li, “Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria,” Finite Elements in Analysis and Design, 43 555-565 (2007).CrossRef S. Hou, Q. Li, S. Long, X. Yang, and W. Li, “Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria,” Finite Elements in Analysis and Design, 43 555-565 (2007).CrossRef
22.
go back to reference J. Hallquist, LS-DYNA® Theory Manual (2006). J. Hallquist, LS-DYNA® Theory Manual (2006).
23.
go back to reference S. Boria, “Sensitivity analysis of material model parameters to reproduce crushing of composite tubes,” J. Mater. Eng. Performance, 28, 3267-3280 (2019).CrossRef S. Boria, “Sensitivity analysis of material model parameters to reproduce crushing of composite tubes,” J. Mater. Eng. Performance, 28, 3267-3280 (2019).CrossRef
24.
go back to reference D. Zeleniakiene, V. Leisis, and P. Griskevicius, “A numerical study to analyse the strength and stiffness of hollow cylindrical structures comprising sandwich fibre reinforced plastic composites,” J. Compos. Mater., 49, 3515-3525 (2015).CrossRef D. Zeleniakiene, V. Leisis, and P. Griskevicius, “A numerical study to analyse the strength and stiffness of hollow cylindrical structures comprising sandwich fibre reinforced plastic composites,” J. Compos. Mater., 49, 3515-3525 (2015).CrossRef
25.
go back to reference R. G. Wang, L. Zhang, J. Zhang, W. B. Liu, and X. D. He, “Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method,” Computational Mater. Sci., 50, No. 1, 20-31, (2010).CrossRef R. G. Wang, L. Zhang, J. Zhang, W. B. Liu, and X. D. He, “Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method,” Computational Mater. Sci., 50, No. 1, 20-31, (2010).CrossRef
26.
go back to reference M. Lobdell, B. Croop, and H. Lobo, “Comparison of crash models for ductile plastics,” 10th European LS-DYNA Conf. (2015). M. Lobdell, B. Croop, and H. Lobo, “Comparison of crash models for ductile plastics,” 10th European LS-DYNA Conf. (2015).
27.
go back to reference P. F. Liu, Z. P. Gu, X. Q. Peng, and J. Y. Zheng, “Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression,” Compos. Struct., 131, 975-986, (2015).CrossRef P. F. Liu, Z. P. Gu, X. Q. Peng, and J. Y. Zheng, “Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression,” Compos. Struct., 131, 975-986, (2015).CrossRef
28.
go back to reference K. Song, C. Davila, and C. Rose, “Guidelines and parameter selection for the simulation of progressive delamination,” 2008 ABAQUS User’s Conf., (2008). K. Song, C. Davila, and C. Rose, “Guidelines and parameter selection for the simulation of progressive delamination,” 2008 ABAQUS User’s Conf., (2008).
29.
go back to reference B. Castanie, C. Bouvet, and M. Ginot, “Review of composite sandwich structure in aeronautic applications,” Compos., Part C, 1, 100004, (2020). B. Castanie, C. Bouvet, and M. Ginot, “Review of composite sandwich structure in aeronautic applications,” Compos., Part C, 1, 100004, (2020).
30.
go back to reference G. Sun, D. Chen, X. Huo, G. Zheng, and Q. Li, “Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels,” Compos. Struct., 184, 110-124 (2018).CrossRef G. Sun, D. Chen, X. Huo, G. Zheng, and Q. Li, “Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels,” Compos. Struct., 184, 110-124 (2018).CrossRef
31.
go back to reference G. Sun, X. Huo, D. Chen, and Q. Li, “Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression,” Mater. Design, 133, 154-168 (2017).CrossRef G. Sun, X. Huo, D. Chen, and Q. Li, “Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression,” Mater. Design, 133, 154-168 (2017).CrossRef
32.
go back to reference W. He, S. Lu, K. Yi, S. Wang, G. Sun, and Z. Hu, “Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact,” International J. Mech. Sci., 161-162, 105026 (2019).CrossRef W. He, S. Lu, K. Yi, S. Wang, G. Sun, and Z. Hu, “Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact,” International J. Mech. Sci., 161-162, 105026 (2019).CrossRef
33.
go back to reference Y. Chen, K. Fu, S. Hou, X. Han, and L. Ye, “Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings,” Compos., Part B, 142, 159-170, (2018).CrossRef Y. Chen, K. Fu, S. Hou, X. Han, and L. Ye, “Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings,” Compos., Part B, 142, 159-170, (2018).CrossRef
Metadata
Title
Multi-Objective Optimization of Geometrical Parameters of Composite Sandwich Panels with an Aluminum Honeycomb Core for an Improved Energy Absorption
Authors
A. Pandey
A. K. Upadhyay
K. K. Shukla
Publication date
16-03-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10080-3

Other articles of this Issue 1/2023

Mechanics of Composite Materials 1/2023 Go to the issue

Premium Partners