Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

06-11-2020 | Issue 6/2021

The Journal of Supercomputing 6/2021

Multi-period traffic on elastic optical networks planning: alleviating the capacity crunch

Journal:
The Journal of Supercomputing > Issue 6/2021
Authors:
Leonardo A. J. Mesquita, Karcius D. R. Assis, Raul C. Almeida Jr
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Advances in optical data transmission technology have allowed the current expansion of bandwidth-demanding services over the Internet. Also, the emergence of orthogonal frequency-division multiplexing (OFDM) has opened the possibility of increasing the network spectral efficiency by solving the routing, modulation and spectrum assignment (RMSA) problem. Recently, investigators have examined the effects of multiple demands or multiple virtual topologies when they are requested at different time periods over a single physical substrate. That makes the RMSA harder and with many more instances. Such analysis is required because network traffic does not remain static along time, and the demand can increase considerably as new user services arise. Therefore, planning the network considering a multi-period study becomes essential, since it can prevent a case where demands may exceed the bandwidth capacity and cause request blocking in future periods. In this work, we provide a novel mixed integer linear programming (MILP) formulation to solve the RMSA problem for several t periods of demands. This model can be used not only to find the solutions to minimize the used capacity, but also as an efficient method of network planning, since it can estimate with a single formulation and a single iteration the point of resource exhaustion in each period t. The results are found for a small network, and they show the efficiency of the proposed MILP formulation. We also propose an alternative version of this formulation with predefined paths, which is less computationally demanding. The results of this study are compared to a step-by-step planning, where the strategy is a decomposition method that breaks the previous formulation into t steps. Comparing the results of the two strategies, it can be seen that the single multi-period formulation is a good strategy to solve the problem. By contrast, the step-by-step strategy may require reconfigurations and eventual interruptions in the network, from a step to another one.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

The Journal of Supercomputing 6/2021 Go to the issue

Premium Partner

    Image Credits