Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

09-04-2021 | Issue 1/2021

Wireless Personal Communications 1/2021

Multi-scale Single Image Super-Resolution with Remote-Sensing Application Using Transferred Wide Residual Network

Journal:
Wireless Personal Communications > Issue 1/2021
Authors:
Farah Deeba, Yuanchun Zhou, Fayaz Ali Dharejo, Yi Du, Xuezhi Wang, She Kun
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Super-resolution (SR) has received extensive attention in recent years for satellite image processing in a wide range of application scenarios, such as land classification, identification of changes, the discovery of resources, etc. Satellite images from satellite sensors are mostly low-resolution (LR) images, so they do not completely fulfill object detection and analysis criteria. SR has multiple residual network frameworks in deep learning that have improved performance and can extend thousands of layers in the system. However, each layer improves accuracy by doubling the number of layers, although training thousands of layers are too expensive, the process is slow, and there are functional recovery issues. We proposed a transferred wide residual Single Image Super-Resolution (SISR) remote sensing deep neural network model (WRSR). By increasing the width and reducing the residual network depth, the proposed approach has dramatically reduced memory costs. As a result, our model reduced memory costs by 21% in Enhanced Deep Residual Super-Resolution (EDSR) and 34% in SRResNet as a direct consequence of the in-depth reduction. The proposed architecture improves the efficiency of training loss by performing weight normalization instead of augmentation technology. We compared our method to five recent existing super-resolution (SR) deep neural network methods, tested over three public satellite image datasets and a standard reference (PRIM) dataset. Experiment analysis is evaluated in peak to signal noise ratio (PSNR) and structural similarity index measure (SSIM).

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue