Skip to main content
Top

23-08-2024

Multi-task Support Vector Machine Classifier with Generalized Huber Loss

Authors: Qi Liu, Wenxin Zhu, Zhengming Dai, Zhihong Ma

Published in: Journal of Classification

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Compared to single-task learning (STL), multi-task learning (MTL) achieves a better generalization by exploiting domain-specific information implicit in the training signals of several related tasks. The adaptation of MTL to support vector machines (SVMs) is a rather successful example. Inspired by the recently published generalized Huber loss SVM (GHSVM) and regularized multi-task learning (RMTL), we propose a novel generalized Huber loss multi-task support vector machine including linear and non-linear cases for binary classification, named as MTL-GHSVM. The new method extends the GHSVM from single-task to multi-task learning, and the application of Huber loss to MTL-SVM is innovative to the best of our knowledge. The proposed method has two main advantages: on the one hand, compared with SVMs with hinge loss and GHSVM, our MTL-GHSVM using the differentiable generalized Huber loss has better generalization performance; on the other hand, it adopts functional iteration to find the optimal solution, and does not need to solve a quadratic programming problem (QPP), which can significantly reduce the computational cost. Numerical experiments have been conducted on fifteen real datasets, and the results demonstrate the effectiveness of the proposed multi-task classification algorithm compared with the state-of-the-art algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
http://people.ee.duke.edu/ lcarin/LandmineData.zip.
 
2
http://www.ics.uci.edu/ mlearn/MLRepository.html.
 
Literature
go back to reference Allenby, G. M., & Rossi, P. E. (1998). Marketing models of consumer heterogeneity. Journal of Econometrics, 89(1–2), 57–78.CrossRef Allenby, G. M., & Rossi, P. E. (1998). Marketing models of consumer heterogeneity. Journal of Econometrics, 89(1–2), 57–78.CrossRef
go back to reference Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine learning, 73, 243–272. Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine learning, 73, 243–272.
go back to reference Arora, N., Allenby, G. M., & Ginter, J. L. (1998). A hierarchical bayes model of primary and secondary demand. Marketing Science, 17(1), 29–44.CrossRef Arora, N., Allenby, G. M., & Ginter, J. L. (1998). A hierarchical bayes model of primary and secondary demand. Marketing Science, 17(1), 29–44.CrossRef
go back to reference Bai, L., Ong, Y.-S., He, T., & Gupta, A. (2020). Multi-task gradient descent for multi-task learning. Memetic Computing, 12, 355–369.CrossRef Bai, L., Ong, Y.-S., He, T., & Gupta, A. (2020). Multi-task gradient descent for multi-task learning. Memetic Computing, 12, 355–369.CrossRef
go back to reference Balasundaram, S., & Meena, Y. (2019). Robust support vector regression in primal with asymmetric huber loss. Neural Processing Letters, 49, 1399–1431.CrossRef Balasundaram, S., & Meena, Y. (2019). Robust support vector regression in primal with asymmetric huber loss. Neural Processing Letters, 49, 1399–1431.CrossRef
go back to reference Balasundaram, S., & Prasad, S. C. (2020). Robust twin support vector regression based on huber loss function. Neural Computing and Applications, 32(15), 11285–11309.CrossRef Balasundaram, S., & Prasad, S. C. (2020). Robust twin support vector regression based on huber loss function. Neural Computing and Applications, 32(15), 11285–11309.CrossRef
go back to reference Baytas, I. M., Yan, M., Jain, A. K., & Zhou, J. (2016). Asynchronous multi-task learning. In 2016 IEEE 16th International Conference on Data Mining (ICDM) (pp. 11–20). Baytas, I. M., Yan, M., Jain, A. K., & Zhou, J. (2016). Asynchronous multi-task learning. In 2016 IEEE 16th International Conference on Data Mining (ICDM) (pp. 11–20).
go back to reference Bertsekas, D. P. (1999). Nonlinear programming: 2nd edition. Bertsekas, D. P. (1999). Nonlinear programming: 2nd edition.
go back to reference Borah, P., & Gupta, D. (2020). Functional iterative approaches for solving support vector classification problems based on generalized huber loss. Neural Computing and Applications, 32(13), 9245–9265.CrossRef Borah, P., & Gupta, D. (2020). Functional iterative approaches for solving support vector classification problems based on generalized huber loss. Neural Computing and Applications, 32(13), 9245–9265.CrossRef
go back to reference Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.CrossRef Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.CrossRef
go back to reference Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.MathSciNet Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.MathSciNet
go back to reference Dheeru, D. & Taniskidou, E. K. (2017). Uci machine learning repository. http: archive. ics. uci. edu. ml. Dheeru, D. & Taniskidou, E. K. (2017). Uci machine learning repository. http: archive. ics. uci. edu. ml.
go back to reference Evgeniou, T. & Pontil, M. (2004). Regularized multi–task learning. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 109–117). Evgeniou, T. & Pontil, M. (2004). Regularized multi–task learning. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 109–117).
go back to reference Evgeniou, T., Pontil, M., & Toubia, O. (2007). A convex optimization approach to modeling consumer heterogeneity in conjoint estimation. Marketing Science, 26(6), 805–818.CrossRef Evgeniou, T., Pontil, M., & Toubia, O. (2007). A convex optimization approach to modeling consumer heterogeneity in conjoint estimation. Marketing Science, 26(6), 805–818.CrossRef
go back to reference García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.CrossRef García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.CrossRef
go back to reference Golub, G. H. & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Matrix computations. Golub, G. H. & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Matrix computations.
go back to reference Gupta, D., Hazarika, B. B., & Berlin, M. (2020). Robust regularized extreme learning machine with asymmetric huber loss function. Neural Computing and Applications, 32(16), 12971–12998.CrossRef Gupta, D., Hazarika, B. B., & Berlin, M. (2020). Robust regularized extreme learning machine with asymmetric huber loss function. Neural Computing and Applications, 32(16), 12971–12998.CrossRef
go back to reference Gupta, U., & Gupta, D. (2021). On regularization based twin support vector regression with huber loss. Neural Processing Letters, 53(1), 459–515.CrossRef Gupta, U., & Gupta, D. (2021). On regularization based twin support vector regression with huber loss. Neural Processing Letters, 53(1), 459–515.CrossRef
go back to reference Heskes, T. (2000). Empirical bayes for learning to learn. In Proceedings of the Seventeenth International Conference on Machine Learning (pp. 367–374). Heskes, T. (2000). Empirical bayes for learning to learn. In Proceedings of the Seventeenth International Conference on Machine Learning (pp. 367–374).
go back to reference Huang, X., Shi, L., & Suykens, J. A. (2013). Support vector machine classifier with pinball loss. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5), 984–997.CrossRef Huang, X., Shi, L., & Suykens, J. A. (2013). Support vector machine classifier with pinball loss. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5), 984–997.CrossRef
go back to reference Jebara, T. (2004). Multi-task feature and kernel selection for SVMs. In Proceedings of the twenty-first international conference on Machine learning (pp. 55). Jebara, T. (2004). Multi-task feature and kernel selection for SVMs. In Proceedings of the twenty-first international conference on Machine learning (pp. 55).
go back to reference Khan, I., Roth, P. M., Bais, A., & Bischof, H. (2013). Semi-supervised image classification with huberized laplacian support vector machines. In 2013 IEEE 9th International Conference on Emerging Technologies (ICET) (pp. 1–6). Khan, I., Roth, P. M., Bais, A., & Bischof, H. (2013). Semi-supervised image classification with huberized laplacian support vector machines. In 2013 IEEE 9th International Conference on Emerging Technologies (ICET) (pp. 1–6).
go back to reference Kong, W., Li, H., Zhang, X., & Zhao, G. (2020). A multi-context representation approach with multi-task learning for object counting. Knowledge-Based Systems, 197, 105927.CrossRef Kong, W., Li, H., Zhang, X., & Zhao, G. (2020). A multi-context representation approach with multi-task learning for object counting. Knowledge-Based Systems, 197, 105927.CrossRef
go back to reference Leiva-Murillo, J. M., Gómez-Chova, L., & Camps-Valls, G. (2012). Multitask remote sensing data classification. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 151–161.CrossRef Leiva-Murillo, J. M., Gómez-Chova, L., & Camps-Valls, G. (2012). Multitask remote sensing data classification. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 151–161.CrossRef
go back to reference Li, Y., Tian, X., Song, M., & Tao, D. (2015). Multi-task proximal support vector machine. Pattern Recognition, 48(10), 3249–3257.CrossRef Li, Y., Tian, X., Song, M., & Tao, D. (2015). Multi-task proximal support vector machine. Pattern Recognition, 48(10), 3249–3257.CrossRef
go back to reference Liang, L. & Cherkassky, V. (2008). Connection between svm+ and multi-task learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (pp. 2048–2054). Liang, L. & Cherkassky, V. (2008). Connection between svm+ and multi-task learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (pp. 2048–2054).
go back to reference Lu, L., Lin, Q., Pei, H., & Zhong, P. (2018). The als-svm based multi-task learning classifiers. Applied Intelligence, 48, 2393–2407.CrossRef Lu, L., Lin, Q., Pei, H., & Zhong, P. (2018). The als-svm based multi-task learning classifiers. Applied Intelligence, 48, 2393–2407.CrossRef
go back to reference Mangasarian, O. L., & Ren, J. (1994). New improved error bounds for the linear complementarity problem. Mathematical Programming, 66(1), 241–255.MathSciNetCrossRef Mangasarian, O. L., & Ren, J. (1994). New improved error bounds for the linear complementarity problem. Mathematical Programming, 66(1), 241–255.MathSciNetCrossRef
go back to reference Mangasarian, O. L. & Wild, E. W. (2001). Proximal support vector machine classifiers. Proceedings KDD-2001: knowledge discovery and data mining, (pp. 77–86). Mangasarian, O. L. & Wild, E. W. (2001). Proximal support vector machine classifiers. Proceedings KDD-2001: knowledge discovery and data mining, (pp. 77–86).
go back to reference Mei, B., & Xu, Y. (2019). Multi-task least squares twin support vector machine for classification. Neurocomputing, 338, 26–33.CrossRef Mei, B., & Xu, Y. (2019). Multi-task least squares twin support vector machine for classification. Neurocomputing, 338, 26–33.CrossRef
go back to reference Ripley, B. D. (2007). Pattern recognition and neural networks. Cambridge University Press. Ripley, B. D. (2007). Pattern recognition and neural networks. Cambridge University Press.
go back to reference Samui, P., & Kim, D. (2013). Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Computing and Applications, 23, 1123–1127.CrossRef Samui, P., & Kim, D. (2013). Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Computing and Applications, 23, 1123–1127.CrossRef
go back to reference Shafiabady, N., Lee, L. H., Rajkumar, R., Kallimani, V. P., Akram, N. A., & Isa, D. (2016). Using unsupervised clustering approach to train the support vector machine for text classification. Neurocomputing, 211, 4–10.CrossRef Shafiabady, N., Lee, L. H., Rajkumar, R., Kallimani, V. P., Akram, N. A., & Isa, D. (2016). Using unsupervised clustering approach to train the support vector machine for text classification. Neurocomputing, 211, 4–10.CrossRef
go back to reference Singh, D., Khan, M. A., Bansal, A., & Bansal, N. (2015). An application of svm in character recognition with chain code. In 2015 Communication, Control and Intelligent Systems (CCIS) (pp. 167–171). Singh, D., Khan, M. A., Bansal, A., & Bansal, N. (2015). An application of svm in character recognition with chain code. In 2015 Communication, Control and Intelligent Systems (CCIS) (pp. 167–171).
go back to reference Song, Y., & Zhu, W. (2016). Multi-task support vector machine for data classification. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(7), 341–350.CrossRef Song, Y., & Zhu, W. (2016). Multi-task support vector machine for data classification. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(7), 341–350.CrossRef
go back to reference Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., & Savarese, S. (2020). Which tasks should be learned together in multi-task learning? In International conference on machine learning (pp. 9120–9132). Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., & Savarese, S. (2020). Which tasks should be learned together in multi-task learning? In International conference on machine learning (pp. 9120–9132).
go back to reference Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9, 293–300.CrossRef Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9, 293–300.CrossRef
go back to reference Suykens, J. A., & Vandewalle, J. (2000). Recurrent least squares support vector machines. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(7), 1109–1114.CrossRef Suykens, J. A., & Vandewalle, J. (2000). Recurrent least squares support vector machines. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(7), 1109–1114.CrossRef
go back to reference Thung, K.-H., & Wee, C.-Y. (2018). A brief review on multi-task learning. Multimedia Tools and Applications, 77(22), 29705–29725.CrossRef Thung, K.-H., & Wee, C.-Y. (2018). A brief review on multi-task learning. Multimedia Tools and Applications, 77(22), 29705–29725.CrossRef
go back to reference Vapnik, V. (2006). Empirical inference science afterword of 2006. Springer. Vapnik, V. (2006). Empirical inference science afterword of 2006. Springer.
go back to reference Vapnik, V., & Chapelle, O. (2000). Bounds on error expectation for support vector machines. Neural Computation, 12(9), 2013–2036.CrossRef Vapnik, V., & Chapelle, O. (2000). Bounds on error expectation for support vector machines. Neural Computation, 12(9), 2013–2036.CrossRef
go back to reference Varghese, N. V., & Mahmoud, Q. H. (2020). A survey of multi-task deep reinforcement learning. Electronics, 9(9), 1363.CrossRef Varghese, N. V., & Mahmoud, Q. H. (2020). A survey of multi-task deep reinforcement learning. Electronics, 9(9), 1363.CrossRef
go back to reference Wang, L., Zhu, J., & Zou, H. (2008). Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics, 24(3), 412–419.CrossRef Wang, L., Zhu, J., & Zou, H. (2008). Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics, 24(3), 412–419.CrossRef
go back to reference Wang, Y., Hu, S., & Wu, S. (2019). Object tracking based on huber loss function. The Visual Computer, 35, 1641–1654.CrossRef Wang, Y., Hu, S., & Wu, S. (2019). Object tracking based on huber loss function. The Visual Computer, 35, 1641–1654.CrossRef
go back to reference Xiao, Y., Wen, J., & Liu, B. (2021). A new multi-task learning method with universum data. Applied Intelligence, 51, 3421–3434.CrossRef Xiao, Y., Wen, J., & Liu, B. (2021). A new multi-task learning method with universum data. Applied Intelligence, 51, 3421–3434.CrossRef
go back to reference Xie, F., Pang, X., & Xu, Y. (2021). Pinball loss-based multi-task twin support vector machine and its safe acceleration method. Neural Computing and Applications, 33(22), 15523–15539.CrossRef Xie, F., Pang, X., & Xu, Y. (2021). Pinball loss-based multi-task twin support vector machine and its safe acceleration method. Neural Computing and Applications, 33(22), 15523–15539.CrossRef
go back to reference Xu, Q., Zhou, H., Wang, Y., & Huang, J. (2009). Fuzzy support vector machine for classification of eeg signals using wavelet-based features. Medical Engineering & Physics, 31(7), 858–865.CrossRef Xu, Q., Zhou, H., Wang, Y., & Huang, J. (2009). Fuzzy support vector machine for classification of eeg signals using wavelet-based features. Medical Engineering & Physics, 31(7), 858–865.CrossRef
go back to reference Xu, S., An, X., Qiao, X., & Zhu, L. (2014). Multi-task least-squares support vector machines. Multimedia Tools and Applications, 71, 699–715.CrossRef Xu, S., An, X., Qiao, X., & Zhu, L. (2014). Multi-task least-squares support vector machines. Multimedia Tools and Applications, 71, 699–715.CrossRef
go back to reference Xu, Y., Akrotirianakis, I., & Chakraborty, A. (2016). Proximal gradient method for huberized support vector machine. Pattern Analysis and Applications, 19, 989–1005.MathSciNetCrossRef Xu, Y., Akrotirianakis, I., & Chakraborty, A. (2016). Proximal gradient method for huberized support vector machine. Pattern Analysis and Applications, 19, 989–1005.MathSciNetCrossRef
go back to reference Xue, Y. & Beauseroy, P. (2016). Multi-task learning for one-class svm with additional new features. In 2016 23rd International Conference on Pattern Recognition (ICPR) (pp. 1571–1576). Xue, Y. & Beauseroy, P. (2016). Multi-task learning for one-class svm with additional new features. In 2016 23rd International Conference on Pattern Recognition (ICPR) (pp. 1571–1576).
go back to reference Yang, H., King, I., & Lyu, M. R. (2010). Multi-task learning for one-class classification. In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). Yang, H., King, I., & Lyu, M. R. (2010). Multi-task learning for one-class classification. In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8).
go back to reference Yang, W., Dong, Y., Du, Q., Qiang, Y., Wu, K., Zhao, J., Yang, X., & Zia, M. B. (2021). Integrate domain knowledge in training multi-task cascade deep learning model for benign-malignant thyroid nodule classification on ultrasound images. Engineering Applications of Artificial Intelligence, 98, 104064.CrossRef Yang, W., Dong, Y., Du, Q., Qiang, Y., Wu, K., Zhao, J., Yang, X., & Zia, M. B. (2021). Integrate domain knowledge in training multi-task cascade deep learning model for benign-malignant thyroid nodule classification on ultrasound images. Engineering Applications of Artificial Intelligence, 98, 104064.CrossRef
go back to reference Yang, Y., & Zou, H. (2013). An efficient algorithm for computing the hhsvm and its generalizations. Journal of Computational and Graphical Statistics, 22(2), 396–415.MathSciNetCrossRef Yang, Y., & Zou, H. (2013). An efficient algorithm for computing the hhsvm and its generalizations. Journal of Computational and Graphical Statistics, 22(2), 396–415.MathSciNetCrossRef
go back to reference Zhai, S., & Jiang, T. (2015). A new sense-through-foliage target recognition method based on hybrid differential evolution and self-adaptive particle swarm optimization-based support vector machine. Neurocomputing, 149, 573–584.CrossRef Zhai, S., & Jiang, T. (2015). A new sense-through-foliage target recognition method based on hybrid differential evolution and self-adaptive particle swarm optimization-based support vector machine. Neurocomputing, 149, 573–584.CrossRef
go back to reference Zhang, K., Liu, Z., & Zheng, L. (2019). Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning. IEEE Transactions on Intelligent Transportation Systems, 21(4), 1480–1490.CrossRef Zhang, K., Liu, Z., & Zheng, L. (2019). Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning. IEEE Transactions on Intelligent Transportation Systems, 21(4), 1480–1490.CrossRef
go back to reference Zhang, X., Chen, W., Wang, B., & Chen, X. (2015). Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization. Neurocomputing, 167, 260–279.CrossRef Zhang, X., Chen, W., Wang, B., & Chen, X. (2015). Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization. Neurocomputing, 167, 260–279.CrossRef
go back to reference Zhang, Y., & Yang, Q. (2018). An overview of multi-task learning. National Science Review, 5(1), 30–43.CrossRef Zhang, Y., & Yang, Q. (2018). An overview of multi-task learning. National Science Review, 5(1), 30–43.CrossRef
go back to reference Zhang, Y., Yu, J., Dong, X., & Zhong, P. (2021). Multi-task support vector machine with pinball loss. Engineering Applications of Artificial Intelligence, 106, 104458.CrossRef Zhang, Y., Yu, J., Dong, X., & Zhong, P. (2021). Multi-task support vector machine with pinball loss. Engineering Applications of Artificial Intelligence, 106, 104458.CrossRef
go back to reference Zhu, W., Song, Y., & Xiao, Y. (2020). Support vector machine classifier with huberized pinball loss. Engineering Applications of Artificial Intelligence, 91, 103635.CrossRef Zhu, W., Song, Y., & Xiao, Y. (2020). Support vector machine classifier with huberized pinball loss. Engineering Applications of Artificial Intelligence, 91, 103635.CrossRef
Metadata
Title
Multi-task Support Vector Machine Classifier with Generalized Huber Loss
Authors
Qi Liu
Wenxin Zhu
Zhengming Dai
Zhihong Ma
Publication date
23-08-2024
Publisher
Springer US
Published in
Journal of Classification
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-024-09488-w

Premium Partner