Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Multi-view Analysis of Unregistered Medical Images Using Cross-View Transformers

Authors : Gijs van Tulder, Yao Tong, Elena Marchiori

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Publisher: Springer International Publishing

share
SHARE

Abstract

Multi-view medical image analysis often depends on the combination of information from multiple views. However, differences in perspective or other forms of misalignment can make it difficult to combine views effectively, as registration is not always possible. Without registration, views can only be combined at a global feature level, by joining feature vectors after global pooling. We present a novel cross-view transformer method to transfer information between unregistered views at the level of spatial feature maps. We demonstrate this method on multi-view mammography and chest X-ray datasets. On both datasets, we find that a cross-view transformer that links spatial feature maps can outperform a baseline model that joins feature vectors after global pooling.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Appendix
Available only for authorised users
Footnotes
1
 
Literature
2.
3.
go back to reference Hashir, M., Bertrand, H., Cohen, J.P.: Quantifying the value of lateral views in deep learning for chest X-rays. In: Medical Imaging with Deep Learning, pp. 288–303. PMLR (September 2020) Hashir, M., Bertrand, H., Cohen, J.P.: Quantifying the value of lateral views in deep learning for chest X-rays. In: Medical Imaging with Deep Learning, pp. 288–303. PMLR (September 2020)
5.
go back to reference Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer Jr, P.: The Digital Database for Screening Mammography (2001) Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer Jr, P.: The Digital Database for Screening Mammography (2001)
6.
go back to reference Irvin, J., et al.: CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. arXiv:​1901.​07031 [cs, eess] (January 2019) Irvin, J., et al.: CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. arXiv:​1901.​07031 [cs, eess] (January 2019)
8.
go back to reference Liu, Y., Zhang, F., Zhang, Q., Wang, S., Wang, Y., Yu, Y.: Cross-view correspondence reasoning based on bipartite graph convolutional network for mammogram mass detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3811–3821. IEEE, Seattle, WA, USA (June 2020). https://​doi.​org/​10.​1109/​CVPR42600.​2020.​00387 Liu, Y., Zhang, F., Zhang, Q., Wang, S., Wang, Y., Yu, Y.: Cross-view correspondence reasoning based on bipartite graph convolutional network for mammogram mass detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3811–3821. IEEE, Seattle, WA, USA (June 2020). https://​doi.​org/​10.​1109/​CVPR42600.​2020.​00387
11.
go back to reference Rubin, J., Sanghavi, D., Zhao, C., Lee, K., Qadir, A., Xu-Wilson, M.: Large Scale Automated Reading of Frontal and Lateral Chest X-Rays using Dual Convolutional Neural Networks. arXiv:​1804.​07839 [cs, stat] (April 2018) Rubin, J., Sanghavi, D., Zhao, C., Lee, K., Qadir, A., Xu-Wilson, M.: Large Scale Automated Reading of Frontal and Lateral Chest X-Rays using Dual Convolutional Neural Networks. arXiv:​1804.​07839 [cs, stat] (April 2018)
13.
go back to reference Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 5998–6008 (2017) Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 5998–6008 (2017)
15.
go back to reference Wu, B., et al.: Visual Transformers: Token-based Image Representation and Processing for Computer Vision. arXiv:​2006.​03677 [cs, eess] (November 2020) Wu, B., et al.: Visual Transformers: Token-based Image Representation and Processing for Computer Vision. arXiv:​2006.​03677 [cs, eess] (November 2020)
Metadata
Title
Multi-view Analysis of Unregistered Medical Images Using Cross-View Transformers
Authors
Gijs van Tulder
Yao Tong
Elena Marchiori
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87199-4_10

Premium Partner