Skip to main content
Top

27-07-2024 | Research

Multi-View Cooperative Learning with Invariant Rationale for Document-Level Relation Extraction

Authors: Rui Lin, Jing Fan, Yinglong He, Yehui Yang, Jia Li, Cunhan Guo

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Document-level relation extraction (RE) is a complex and significant natural language processing task, as the massive entity pairs exist in the document and are across sentences in reality. However, the existing relation extraction methods (deep learning) often use single-view information (e.g., entity-level or sentence-level) to learn the relational information but ignore the multi-view information, and the explanations of deep learning are difficult to be reflected, although it achieves good results. To extract high-quality relational information from the document and improve the explanations of the model, we propose a multi-view cooperative learning with invariant rationale (MCLIR) framework. Firstly, we design the multi-view cooperative learning to find latent relational information from the various views. Secondly, we utilize invariant rationale to encourage the model to focus on crucial information, which can empower the performance and explanations of the model. We conduct the experiment on two public datasets, and the results of the experiment demonstrate the effectiveness of MCLIR.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Proceedings of NIPS, 2017; pp. 6000–6010. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Proceedings of NIPS, 2017; pp. 6000–6010.
6.
go back to reference Ji G, Liu K, He S, Zhao J. Distant supervision for relation extraction with sentence-level attention and entity descriptions. In: Proceedings of AAAI, 2017; pp. 3060–3066. Ji G, Liu K, He S, Zhao J. Distant supervision for relation extraction with sentence-level attention and entity descriptions. In: Proceedings of AAAI, 2017; pp. 3060–3066.
9.
go back to reference Reali P, Lolatto R, Coelli S, Tartaglia G, Bianchi AM. Information retrieval from photoplethysmographic sensors: a comprehensive comparison of practical interpolation and breath-extraction techniques at different sampling rates. Sensors. 2022;22(4):1428. https://doi.org/10.3390/s22041428.CrossRef Reali P, Lolatto R, Coelli S, Tartaglia G, Bianchi AM. Information retrieval from photoplethysmographic sensors: a comprehensive comparison of practical interpolation and breath-extraction techniques at different sampling rates. Sensors. 2022;22(4):1428. https://​doi.​org/​10.​3390/​s22041428.CrossRef
10.
go back to reference Nan G, Guo Z, Sekulic I, Lu W. Reasoning with latent structure refinement for document-level relation extraction. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, 2020; pp. 1546–1557. https://doi.org/10.18653/v1/2020.acl-main.141. Nan G, Guo Z, Sekulic I, Lu W. Reasoning with latent structure refinement for document-level relation extraction. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, 2020; pp. 1546–1557. https://​doi.​org/​10.​18653/​v1/​2020.​acl-main.​141.
11.
go back to reference Tang H, Cao Y, Zhang Z, Cao J, Fang F, Wang S, Yin P. HIN: hierarchical inference network for document-level relation extraction. In: Lauw, H.W., Wong, R.C., Ntoulas, A., Lim, E., Ng, S., Pan, S.J. (eds.) Advances in Knowledge Discovery and Data Mining - 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11-14, 2020, Proceedings, Part I. Lecture Notes in Computer Science. 2020;12084:197–209. https://doi.org/10.1007/978-3-030-47426-3_16. Tang H, Cao Y, Zhang Z, Cao J, Fang F, Wang S, Yin P. HIN: hierarchical inference network for document-level relation extraction. In: Lauw, H.W., Wong, R.C., Ntoulas, A., Lim, E., Ng, S., Pan, S.J. (eds.) Advances in Knowledge Discovery and Data Mining - 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11-14, 2020, Proceedings, Part I. Lecture Notes in Computer Science. 2020;12084:197–209. https://​doi.​org/​10.​1007/​978-3-030-47426-3_​16.
12.
go back to reference Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. 2017. CoRR abs/1710.10903. Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. 2017. CoRR abs/1710.10903.
16.
go back to reference Guo Z, Zhang Y, Lu W. Attention guided graph convolutional networks for relation extraction. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, 2019; pp. 241–251. https://doi.org/10.18653/v1/p19-1024. Guo Z, Zhang Y, Lu W. Attention guided graph convolutional networks for relation extraction. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, 2019; pp. 241–251. https://​doi.​org/​10.​18653/​v1/​p19-1024.
17.
go back to reference Wang H, Focke C, Sylvester R, Mishra N, Wang W. Fine-tune BERT for DocRED with two-step process. 2019, CoRR abs/1909.11898. arXiv:1909.11898. Wang H, Focke C, Sylvester R, Mishra N, Wang W. Fine-tune BERT for DocRED with two-step process. 2019, CoRR abs/1909.11898. arXiv:​1909.​11898.
18.
go back to reference Ye D, Lin Y, Du J, Liu Z, Li P, Sun M, Liu Z. Coreferential reasoning learning for language representation. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, 2020; pp. 7170–7186. https://doi.org/10.18653/v1/2020.emnlp-main.582. Ye D, Lin Y, Du J, Liu Z, Li P, Sun M, Liu Z. Coreferential reasoning learning for language representation. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, 2020; pp. 7170–7186. https://​doi.​org/​10.​18653/​v1/​2020.​emnlp-main.​582.
19.
go back to reference Santos CND, Xiang B, Zhou B. Classifying relations by ranking with convolutional neural networks. Comput Sci. 2015;86(86):132–7. Santos CND, Xiang B, Zhou B. Classifying relations by ranking with convolutional neural networks. Comput Sci. 2015;86(86):132–7.
20.
go back to reference Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Comput Sci. 2014. Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Comput Sci. 2014.
26.
go back to reference Miwa M, Bansal M. End-to-end relation extraction using LSTMS on sequences and tree structures. In: Proceedings of ACL, 2016; pp. 1105–1116. Miwa M, Bansal M. End-to-end relation extraction using LSTMS on sequences and tree structures. In: Proceedings of ACL, 2016; pp. 1105–1116.
27.
go back to reference Guo, Z., Zhang, Y., Lu, W.: Attention guided graph convolutional networks for relation extraction. 2019. CoRR abs/1906.07510. arXiv:1906.07510. Guo, Z., Zhang, Y., Lu, W.: Attention guided graph convolutional networks for relation extraction. 2019. CoRR abs/1906.07510. arXiv:​1906.​07510.
31.
go back to reference Huang Q, Zhu S, Feng Y, Ye Y, Lai Y, Zhao D. Three sentences are all you need: local path enhanced document relation extraction. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, 2021; pp. 998–1004. Huang Q, Zhu S, Feng Y, Ye Y, Lai Y, Zhao D. Three sentences are all you need: local path enhanced document relation extraction. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, 2021; pp. 998–1004.
32.
go back to reference Xu W, Chen K, Zhao T. Discriminative reasoning for document-level relation extraction. In: Zong C, Xia F, Li W, Navigli R (eds.) Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021. Findings of ACL, vol. ACL/IJCNLP 2021, 2021; pp. 1653–1663. Xu W, Chen K, Zhao T. Discriminative reasoning for document-level relation extraction. In: Zong C, Xia F, Li W, Navigli R (eds.) Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021. Findings of ACL, vol. ACL/IJCNLP 2021, 2021; pp. 1653–1663.
34.
go back to reference Wang X, Wei J, Schuurmans D, Le Q, Chi E, Zhou D. Rationale-augmented ensembles in language models. 2022. arXiv preprint arXiv:2207.00747. Wang X, Wei J, Schuurmans D, Le Q, Chi E, Zhou D. Rationale-augmented ensembles in language models. 2022. arXiv preprint arXiv:​2207.​00747.
35.
go back to reference Yu S, Krishnapuram B, Rosales R, Rao RB. Bayesian co-training. J Mach Learn Res. 2011;12:2649–80.MathSciNet Yu S, Krishnapuram B, Rosales R, Rao RB. Bayesian co-training. J Mach Learn Res. 2011;12:2649–80.MathSciNet
38.
go back to reference Li J, Gui L, Zhou Y, West D, Aloisi C, He Y. Distilling ChatGPT for explainable automated student answer assessment. 2023. arXiv preprint arXiv:2305.12962. Li J, Gui L, Zhou Y, West D, Aloisi C, He Y. Distilling ChatGPT for explainable automated student answer assessment. 2023. arXiv preprint arXiv:​2305.​12962.
39.
go back to reference Lei T, Barzilay R, Jaakkola TS. Rationalizing neural predictions. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, 2016; pp. 107–117. https://doi.org/10.18653/v1/d16-1011. Lei T, Barzilay R, Jaakkola TS. Rationalizing neural predictions. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, 2016; pp. 107–117. https://​doi.​org/​10.​18653/​v1/​d16-1011.
40.
go back to reference Du M, Liu N, Yang F, Hu X. Learning credible deep neural networks with rationale regularization. In: Wang, J., Shim, K., Wu, X. (eds.) 2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019, 2019; pp. 150–159. https://doi.org/10.1109/ICDM.2019.00025. Du M, Liu N, Yang F, Hu X. Learning credible deep neural networks with rationale regularization. In: Wang, J., Shim, K., Wu, X. (eds.) 2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019, 2019; pp. 150–159. https://​doi.​org/​10.​1109/​ICDM.​2019.​00025.
41.
go back to reference Jiang Z, Zhang Y, Yang Z, Zhao J, Liu K. Alignment rationale for natural language inference. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, 2021; pp. 5372–5387. https://doi.org/10.18653/v1/2021.acl-long.417. Jiang Z, Zhang Y, Yang Z, Zhao J, Liu K. Alignment rationale for natural language inference. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, 2021; pp. 5372–5387. https://​doi.​org/​10.​18653/​v1/​2021.​acl-long.​417.
42.
go back to reference Vafa K, Deng Y, Blei DM, Rush AM. Rationales for sequential predictions. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, 2021; pp. 10314–10332. https://doi.org/10.18653/v1/2021.emnlp-main.807. Vafa K, Deng Y, Blei DM, Rush AM. Rationales for sequential predictions. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, 2021; pp. 10314–10332. https://​doi.​org/​10.​18653/​v1/​2021.​emnlp-main.​807.
43.
go back to reference Wiegreffe S, Marasović A, Smith NA. Measuring association between labels and free-text rationales. 2020. arXiv preprint arXiv:2010.12762. Wiegreffe S, Marasović A, Smith NA. Measuring association between labels and free-text rationales. 2020. arXiv preprint arXiv:​2010.​12762.
Metadata
Title
Multi-View Cooperative Learning with Invariant Rationale for Document-Level Relation Extraction
Authors
Rui Lin
Jing Fan
Yinglong He
Yehui Yang
Jia Li
Cunhan Guo
Publication date
27-07-2024
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10322-z

Premium Partner