Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-08-2019 | Original Article | Issue 3/2020

International Journal of Machine Learning and Cybernetics 3/2020

Multi-view local linear KNN classification: theoretical and experimental studies on image classification

Journal:
International Journal of Machine Learning and Cybernetics > Issue 3/2020
Authors:
Zhibin Jiang, Zekang Bian, Shitong Wang
Important notes
Zhibin Jiang and Zekang Bian have the equal contributions to this study.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

When handling special multi-view scenarios where data from each view keep the same features, we may perhaps encounter two serious challenges: (1) samples from different views of the same class are less similar than those from the same view but different class, which sometimes happen in local way in both training and/or testing phases; (2) training an explicit prediction model becomes unreliable and even infeasible for test samples in multi-view scenarios. In this study, we prefer the philosophy of the k nearest neighbor method (KNN) to circumvent the second challenge. Without an explicit prediction model trained directly from the above multi-view data, a new multi-view local linear k nearest neighbor method (MV-LLKNN) is then developed to circumvent the two challenges so as to predict the label of each test sample. MV-LLKNN has its two reliable assumptions. One is the theoretically and experimentally provable assumption that any test sample can be well approximated by a linear combination of its neighbors in the multi-view training dataset. The other assumes that these neighbors should demonstrate their clustering property according to certain commonality-based similarity measure between the multi-view test sample and these multi-view neighbors so as to avoid the first challenge. MV-LLKNN can realize its effective prediction for a test multi-view sample by cheaply using both on-hand fast iterative shrinkage thresholding algorithm (FISTA) and KNN. Our theoretical analysis and experimental results about real multi-view face datasets indicate the effectiveness of MV-LLKNN.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2020

International Journal of Machine Learning and Cybernetics 3/2020 Go to the issue