Skip to main content
Top

2018 | OriginalPaper | Chapter

8. Multidisciplinary Coupling Analysis and Design

Authors : Zhengping Zou, Songtao Wang, Huoxing Liu, Weihao Zhang

Published in: Axial Turbine Aerodynamics for Aero-engines

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Increasing turbine inlet temperature is an important method to improve cycle efficiency of gas turbines. A previous study has shown that each increase of 40 K in turbine inlet temperature would result in a 10% increase in output power of gas turbines and a 1.5% increase in cycle efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, X. (2006). Mordern gas turbine technology. Beijing: Aviation Industry Press. Li, X. (2006). Mordern gas turbine technology. Beijing: Aviation Industry Press.
2.
go back to reference Han, J. C., Duffa, S., & Ekkad, S. V. (2000). Gas turbine heat transfer and cooling technology. New York: Taylor & Francis. Han, J. C., Duffa, S., & Ekkad, S. V. (2000). Gas turbine heat transfer and cooling technology. New York: Taylor & Francis.
3.
go back to reference Cao, Y., Tao, Z., & Xu, G. (2005). Heat transfer in aero-engine. Beijing: Beihang University Press. Cao, Y., Tao, Z., & Xu, G. (2005). Heat transfer in aero-engine. Beijing: Beihang University Press.
4.
go back to reference Dixon, J. A., Valencia, A. G., Coren, D., et al. (2014). Main annulus gas path interactions—Turbine stator well heat transfer. Journal of Turbomachinery, 136, 21010.CrossRef Dixon, J. A., Valencia, A. G., Coren, D., et al. (2014). Main annulus gas path interactions—Turbine stator well heat transfer. Journal of Turbomachinery, 136, 21010.CrossRef
5.
go back to reference Janke, E., & Wolf, T. (2010). Aerothermal research for turbine components: an overview of the European AITEB-2 project. ASME Paper GT2010-23511. Janke, E., & Wolf, T. (2010). Aerothermal research for turbine components: an overview of the European AITEB-2 project. ASME Paper GT2010-23511.
6.
go back to reference Han, J. C., & Rallabandi, A. (2010). Turbine blade film cooling using PSP technique. Frontiers in Heat and Mass Transfer, 1, 013001.CrossRef Han, J. C., & Rallabandi, A. (2010). Turbine blade film cooling using PSP technique. Frontiers in Heat and Mass Transfer, 1, 013001.CrossRef
7.
go back to reference Monico, R. D., & Chew, J. W. (1993). Modelling thermal behaviour of turbomachinery discs and casings. AGARD, Heat Transfer and Cooling in Gas Turbines. Monico, R. D., & Chew, J. W. (1993). Modelling thermal behaviour of turbomachinery discs and casings. AGARD, Heat Transfer and Cooling in Gas Turbines.
8.
go back to reference Dunn, M. G., Kim, J., Civinskas, K. C., et al. (1994). Time-averaged heat transfer and pressure measurements and comparison with prediction for a two-stage turbine. Journal of Turbomachinery, 116(1), 14–22.CrossRef Dunn, M. G., Kim, J., Civinskas, K. C., et al. (1994). Time-averaged heat transfer and pressure measurements and comparison with prediction for a two-stage turbine. Journal of Turbomachinery, 116(1), 14–22.CrossRef
9.
go back to reference Ameri, A. A., & Bunker, R. S. (2000). Heat transfer and flow on the first-stage blade tip of a power generation gas turbine: Part 2—Simulation results. Journal of Turbomachinery, 122(2), 272–277.CrossRef Ameri, A. A., & Bunker, R. S. (2000). Heat transfer and flow on the first-stage blade tip of a power generation gas turbine: Part 2—Simulation results. Journal of Turbomachinery, 122(2), 272–277.CrossRef
10.
go back to reference Saha, A. K., Acharya, S., Bunker, R., et al. (2006). Blade tip leakage flow and heat transfer with pressure-side winglet. International Journal of Rotating Machinery. Saha, A. K., Acharya, S., Bunker, R., et al. (2006). Blade tip leakage flow and heat transfer with pressure-side winglet. International Journal of Rotating Machinery.
11.
go back to reference Roy, R. P., Xu, G., & Feng, J. (2001). A study of convective heat transfer in a model rotor–stator disk cavity. Journal of Turbomachinery, 123(3), 621–632.CrossRef Roy, R. P., Xu, G., & Feng, J. (2001). A study of convective heat transfer in a model rotor–stator disk cavity. Journal of Turbomachinery, 123(3), 621–632.CrossRef
12.
go back to reference Pasinato, H. D., Squires, K. D., & Roy, R. P. (2004). Measurements and modeling of the flow and heat transfer in a contoured vane-endwall passage. International Journal of Heat and Mass Transfer, 47(26), 5685–5702.CrossRef Pasinato, H. D., Squires, K. D., & Roy, R. P. (2004). Measurements and modeling of the flow and heat transfer in a contoured vane-endwall passage. International Journal of Heat and Mass Transfer, 47(26), 5685–5702.CrossRef
13.
go back to reference Simone, S., Montomoli, F., Martelli, F., et al. (2012). Analysis on the effect of a nonuniform inlet profile on heat transfer and fluid flow in turbine stages. Journal of Turbomachinery, 134, 11012.CrossRef Simone, S., Montomoli, F., Martelli, F., et al. (2012). Analysis on the effect of a nonuniform inlet profile on heat transfer and fluid flow in turbine stages. Journal of Turbomachinery, 134, 11012.CrossRef
14.
go back to reference Dunn, M. G. (2001). Convective heat transfer and aerodynamics in axial flow turbines. Journal of Turbomachinery, 123(4), 637–686.CrossRef Dunn, M. G. (2001). Convective heat transfer and aerodynamics in axial flow turbines. Journal of Turbomachinery, 123(4), 637–686.CrossRef
15.
go back to reference Rigby, D. L., & Lepicovsky, J. (2001). Conjugate heat transfer analysis of internally cooled configurations. ASME Paper GT2001-0405. Rigby, D. L., & Lepicovsky, J. (2001). Conjugate heat transfer analysis of internally cooled configurations. ASME Paper GT2001-0405.
16.
go back to reference Huang, H. (2002). Numerical and experimental investigation on flow and heat fields in turbine cascade. Beijing: Chinese Academy of Sciences. Huang, H. (2002). Numerical and experimental investigation on flow and heat fields in turbine cascade. Beijing: Chinese Academy of Sciences.
17.
go back to reference Bohn, D., Becker, V., Kusterer, K., et al. (1999). 3-D internal flow and conjugate calculations of a convective cooled turbine blade with serpentine-shaped and ribbed channels. ASME Paper 99-GT-220. Bohn, D., Becker, V., Kusterer, K., et al. (1999). 3-D internal flow and conjugate calculations of a convective cooled turbine blade with serpentine-shaped and ribbed channels. ASME Paper 99-GT-220.
18.
go back to reference Li, Y. (2011). A 3-D conjugate heat transfer solver and methodology research. Beijing: Beihang University. Li, Y. (2011). A 3-D conjugate heat transfer solver and methodology research. Beijing: Beihang University.
19.
go back to reference Wang, P., Li, Y., Zou, Z. P., et al. (2012). Improvement of turbulence model for conjugate heat transfer simulation. Numerical Heat Transfer (Part A), 62(8), 624–638.CrossRef Wang, P., Li, Y., Zou, Z. P., et al. (2012). Improvement of turbulence model for conjugate heat transfer simulation. Numerical Heat Transfer (Part A), 62(8), 624–638.CrossRef
20.
go back to reference Li, H., Feng, G., Wang, S., et al. (2003). Numerical simulation method of aerodynamics-themodynamics coupling in 3-D turbine cascade. Beijing: Journal of Engineering Thermophysics, 24(5), 770–772. Li, H., Feng, G., Wang, S., et al. (2003). Numerical simulation method of aerodynamics-themodynamics coupling in 3-D turbine cascade. Beijing: Journal of Engineering Thermophysics, 24(5), 770–772.
21.
go back to reference Zhang, H. (2013). Investigation of numerical conjugate heat transfer method and coupling mechanism for hybrid porous/fluid/solid domains. Beijing: Beihang University. Zhang, H. (2013). Investigation of numerical conjugate heat transfer method and coupling mechanism for hybrid porous/fluid/solid domains. Beijing: Beihang University.
22.
go back to reference Zhang, H., Zou, Z., Li, Y., & Ye, J. (2011). Preconditioned density-based algorithm for conjugate porous/fluid/solid domains. Numerical Heat Transfer (Part A), 60(2), 129–153.CrossRef Zhang, H., Zou, Z., Li, Y., & Ye, J. (2011). Preconditioned density-based algorithm for conjugate porous/fluid/solid domains. Numerical Heat Transfer (Part A), 60(2), 129–153.CrossRef
23.
go back to reference Baoguo, Wang, Ge, Gao, Weiguang, Huang, et al. (2014). Unsteady Aerodynamics. Beijing: Beijing Institute of Technology Press. Baoguo, Wang, Ge, Gao, Weiguang, Huang, et al. (2014). Unsteady Aerodynamics. Beijing: Beijing Institute of Technology Press.
24.
go back to reference Lucor, D., Xiu, D., & Su, C. H. (2003). Predictability and uncertainty in CFD. International Journal for Numerical Methods in Fluids, 43(5), 483–505.MathSciNetMATH Lucor, D., Xiu, D., & Su, C. H. (2003). Predictability and uncertainty in CFD. International Journal for Numerical Methods in Fluids, 43(5), 483–505.MathSciNetMATH
25.
go back to reference Lehmann, K., Thomas, R., Hodson, H., et al. (2009). Heat transfer and aerodynamics of over-shroud leakage flows in a high-pressure turbine. ASME Paper GT2009-59531. Lehmann, K., Thomas, R., Hodson, H., et al. (2009). Heat transfer and aerodynamics of over-shroud leakage flows in a high-pressure turbine. ASME Paper GT2009-59531.
26.
go back to reference Chen, W., Kan, R., & Ren, J. (2010). Experimental investigation of heat transfer and pressure drop in a two-pass internal coolant passages of gas turbine airfoil. Beijng: Journal of Aerospace Power, 12, 2779–2786. Chen, W., Kan, R., & Ren, J. (2010). Experimental investigation of heat transfer and pressure drop in a two-pass internal coolant passages of gas turbine airfoil. Beijng: Journal of Aerospace Power, 12, 2779–2786.
27.
go back to reference Arroyo, O. C., Gunnar, J. T., & Wallin, F. (2012). Experimental heat transfer investigation of an aggressive intermediate turbine duct. Journal of Turbomachinery, 134, 51026.CrossRef Arroyo, O. C., Gunnar, J. T., & Wallin, F. (2012). Experimental heat transfer investigation of an aggressive intermediate turbine duct. Journal of Turbomachinery, 134, 51026.CrossRef
28.
go back to reference Serkan, Ö. (2004). Effect of heat transfer on stability and transition characteristics of boundary-layers. International Journal of Heat and Mass Transfer, 47(22), 4697–4712.CrossRefMATH Serkan, Ö. (2004). Effect of heat transfer on stability and transition characteristics of boundary-layers. International Journal of Heat and Mass Transfer, 47(22), 4697–4712.CrossRefMATH
29.
go back to reference Wu, X., & Moin, P. (2010). Transitional and turbulent boundary layer with heat transfer. Physics of Fluids, 22(8), 1–8.CrossRef Wu, X., & Moin, P. (2010). Transitional and turbulent boundary layer with heat transfer. Physics of Fluids, 22(8), 1–8.CrossRef
30.
go back to reference Shafi, H. S., Antonia, R. A., & Krogstad, P. A. (1997). Heat flux measurements in a turbulent boundary layer on a rough wall. International Journal of Heat and Mass Transfer, 40(12), 2989–2993.CrossRef Shafi, H. S., Antonia, R. A., & Krogstad, P. A. (1997). Heat flux measurements in a turbulent boundary layer on a rough wall. International Journal of Heat and Mass Transfer, 40(12), 2989–2993.CrossRef
31.
go back to reference Krogstad, P. A., Antonia, R. A., & Browne, L. W. B. (1992). Comparison between rough and smooth-wall turbulent boundary layers. Journal of Fluid Mechanics, 245, 599–617.CrossRef Krogstad, P. A., Antonia, R. A., & Browne, L. W. B. (1992). Comparison between rough and smooth-wall turbulent boundary layers. Journal of Fluid Mechanics, 245, 599–617.CrossRef
32.
go back to reference Han, J. C. (2013). Fundamental gas turbine heat transfer. Journal of Thermal Science and Engineering Applications, 5(2), 21007.CrossRef Han, J. C. (2013). Fundamental gas turbine heat transfer. Journal of Thermal Science and Engineering Applications, 5(2), 21007.CrossRef
33.
go back to reference Giel, P. W., Fossen, G. J., Boyle, R. J., et al. (1999). Blade heat transfer measurements and predictions in a transonic turbine cascade. ASME Paper 99-GT-125. Giel, P. W., Fossen, G. J., Boyle, R. J., et al. (1999). Blade heat transfer measurements and predictions in a transonic turbine cascade. ASME Paper 99-GT-125.
34.
go back to reference Garg, V. K. (2002). Heat transfer research on gas turbine airfoils at NASA GRC. International Journal of Heat and Fluid Flow, 23(2), 109–136.CrossRef Garg, V. K. (2002). Heat transfer research on gas turbine airfoils at NASA GRC. International Journal of Heat and Fluid Flow, 23(2), 109–136.CrossRef
35.
go back to reference Mischo, B., Burdet, A., & Abhari, R. S. (2011). Influence of stator-rotor interaction on the aerothermal performance of recess blade tips. Journal of Turbomachinery, 133, 11023.CrossRef Mischo, B., Burdet, A., & Abhari, R. S. (2011). Influence of stator-rotor interaction on the aerothermal performance of recess blade tips. Journal of Turbomachinery, 133, 11023.CrossRef
36.
go back to reference Maffulli, R., & He, L. (2013). Wall temperature effects on heat transfer coefficient. ASME Paper GT2013-94291. Maffulli, R., & He, L. (2013). Wall temperature effects on heat transfer coefficient. ASME Paper GT2013-94291.
37.
go back to reference Xing, J., Zhou, Sh., Cui, E. (1997). A survey on the fluid-solid interaction mechanics. Beijing: Advances in Mechanics, 27(1):19–30. Xing, J., Zhou, Sh., Cui, E. (1997). A survey on the fluid-solid interaction mechanics. Beijing: Advances in Mechanics, 27(1):19–30.
38.
go back to reference Sheng, Zhou, et al. (1989). Turbomachinery aeroelasticity introduction. Beijing: National Defense Industry Press. Sheng, Zhou, et al. (1989). Turbomachinery aeroelasticity introduction. Beijing: National Defense Industry Press.
39.
go back to reference Wilson, M. J., Imregun, M., & Sayma, A. I. (2006). The effect of stagger variability in gas turbine fan assemblies. ASME Paper GT2006-90434. Wilson, M. J., Imregun, M., & Sayma, A. I. (2006). The effect of stagger variability in gas turbine fan assemblies. ASME Paper GT2006-90434.
40.
go back to reference Fang, Ch. (2004). Prospective development of aeroengines. Shenyang: Aeroengines, 30(1), 1–5. Fang, Ch. (2004). Prospective development of aeroengines. Shenyang: Aeroengines, 30(1), 1–5.
41.
go back to reference Marshall, J. G., & Imregun, M. (1996). A review of aeroelasticity methods with emphasis on turbomachinery applications. Journal of Fluids and Structures, 10(3), 237–267.CrossRef Marshall, J. G., & Imregun, M. (1996). A review of aeroelasticity methods with emphasis on turbomachinery applications. Journal of Fluids and Structures, 10(3), 237–267.CrossRef
42.
go back to reference Meng, Y., Li, L., Li, Q. (2006). Transient analytical method of vane forcing response under stator-rotor wake influence. Beijing: Journal of Beijing University of Aeronautics and Astronautics, 32(6):671–674. Meng, Y., Li, L., Li, Q. (2006). Transient analytical method of vane forcing response under stator-rotor wake influence. Beijing: Journal of Beijing University of Aeronautics and Astronautics, 32(6):671–674.
43.
go back to reference Meng, Y., Li, L., Li, Q. (2007). Investigation of force under asymmetry stator wake. Beijing: Journal of Beijing University of Aeronautics and Astronautics, 33(9):1005–1008. Meng, Y., Li, L., Li, Q. (2007). Investigation of force under asymmetry stator wake. Beijing: Journal of Beijing University of Aeronautics and Astronautics, 33(9):1005–1008.
44.
go back to reference Gong, S. (2008). Research on unsteady flow and blade forced response in turbomachinery. Beijing: Beihang University. Gong, S. (2008). Research on unsteady flow and blade forced response in turbomachinery. Beijing: Beihang University.
45.
go back to reference Gong, S., Zou, Z., Yang, Zh., et al. (2009). Numerical simulation of fluid-solid coupling of blades in the last stage of a steam turbine. Beijing: Journal of Engineering for Thermal Energy and Power, 24(1):31–36. Gong, S., Zou, Z., Yang, Zh., et al. (2009). Numerical simulation of fluid-solid coupling of blades in the last stage of a steam turbine. Beijing: Journal of Engineering for Thermal Energy and Power, 24(1):31–36.
46.
go back to reference Whitehead, D. S. (1959). The vibration of cascade blades treated by actuator disk methods. Proceedings of the Institution of Mechanical Engineers, 173(1), 555–574.CrossRef Whitehead, D. S. (1959). The vibration of cascade blades treated by actuator disk methods. Proceedings of the Institution of Mechanical Engineers, 173(1), 555–574.CrossRef
47.
go back to reference Carta, F. O. (1967). Coupled blade-disc-shroud flutter instabilities in turbojet engine rotors. ASME Journal of Engineering for Power, 89(3), 419–426.CrossRef Carta, F. O. (1967). Coupled blade-disc-shroud flutter instabilities in turbojet engine rotors. ASME Journal of Engineering for Power, 89(3), 419–426.CrossRef
48.
go back to reference Carta, F. O., & St.Hilaire, A. O. (1980). Effect of interblade phase angle and incidence angle on cascade pitching stability. ASME Journal of Engineering for Gas Turbines and Power, 102(2), 391–396.CrossRef Carta, F. O., & St.Hilaire, A. O. (1980). Effect of interblade phase angle and incidence angle on cascade pitching stability. ASME Journal of Engineering for Gas Turbines and Power, 102(2), 391–396.CrossRef
49.
go back to reference Ellenberger, K., Gallus, H. E. (1999). Experimental investigations of stall flutter in a transonic cascade. ASME Paper 99-GT-409. Ellenberger, K., Gallus, H. E. (1999). Experimental investigations of stall flutter in a transonic cascade. ASME Paper 99-GT-409.
50.
go back to reference He, L. (1996). Unsteady flow in oscillating turbine cascade; Part 1: Linear cascade experiment. ASME Paper 96-GT-374. He, L. (1996). Unsteady flow in oscillating turbine cascade; Part 1: Linear cascade experiment. ASME Paper 96-GT-374.
51.
go back to reference Bendiksen, O. O., & Friedmann, P. P. (1982). The effect of bending-torsion coupling on fan and compressor blade flutter. ASME Journal of Engineering for Power, 104(3), 617–623.CrossRef Bendiksen, O. O., & Friedmann, P. P. (1982). The effect of bending-torsion coupling on fan and compressor blade flutter. ASME Journal of Engineering for Power, 104(3), 617–623.CrossRef
52.
go back to reference Nowinski, M., & Panovsky, J. (2000). Flutter mechanisms in low pressure turbine blades. ASME Journal of Engineering for Gas Turbines and Power, 122(1), 82–88.CrossRef Nowinski, M., & Panovsky, J. (2000). Flutter mechanisms in low pressure turbine blades. ASME Journal of Engineering for Gas Turbines and Power, 122(1), 82–88.CrossRef
53.
go back to reference Tchernycheva, O., Fransson, T. H., Kielb, R. E., et al. (2001). Comparative analysis of blade mode shape influence on flutter of two-dimensional turbine blades. ISABE Paper ISABE-2001-1243. Tchernycheva, O., Fransson, T. H., Kielb, R. E., et al. (2001). Comparative analysis of blade mode shape influence on flutter of two-dimensional turbine blades. ISABE Paper ISABE-2001-1243.
54.
go back to reference Yang, H., He, L., Wang, Y. (2008). Experimental Study on Aeroelasticity in Linear Oscillating Compressor Cascade. PartII: Tip-clearance Effect. Beijing: Acta Aeronautica et Astronautica Sinca, 29(4):804–810. Yang, H., He, L., Wang, Y. (2008). Experimental Study on Aeroelasticity in Linear Oscillating Compressor Cascade. PartII: Tip-clearance Effect. Beijing: Acta Aeronautica et Astronautica Sinca, 29(4):804–810.
55.
go back to reference Wang, Y. (1999). Researches on several problems of blade flutter in turbomachinery. Beijing: Beihang University. Wang, Y. (1999). Researches on several problems of blade flutter in turbomachinery. Beijing: Beihang University.
56.
go back to reference Zhang, X., & Wang, Y. (2010). Influence of interblade phase angle on the flutter of rotor blades. Beijing: Journal of Aerospace Power, 25(02), 412–416. Zhang, X., & Wang, Y. (2010). Influence of interblade phase angle on the flutter of rotor blades. Beijing: Journal of Aerospace Power, 25(02), 412–416.
57.
go back to reference Xu, K., & Wang, Y. (2011). Application of time domain method in aeroelastic computations for compressor rotors. Beijing: Journal of Aerospace Power, 26(01), 191–198. Xu, K., & Wang, Y. (2011). Application of time domain method in aeroelastic computations for compressor rotors. Beijing: Journal of Aerospace Power, 26(01), 191–198.
58.
go back to reference Zhang, X., Wang, Y., & Xu, K. (2011). Effects of parameters on blade flutter in turbomachinery. Beijing: Journal of Aerospace Power, 26(07), 1557–1562. Zhang, X., Wang, Y., & Xu, K. (2011). Effects of parameters on blade flutter in turbomachinery. Beijing: Journal of Aerospace Power, 26(07), 1557–1562.
59.
go back to reference Zhang, Z. (2009). Numerical simulation of flutter in turbomachinery. Beijing: Beihang University. Zhang, Z. (2009). Numerical simulation of flutter in turbomachinery. Beijing: Beihang University.
60.
go back to reference Zhang, Z., Zou, Z., Wang, Y., et al. (2010). Flutter prediction method applied in turbomachinery design. Beijing: Journal of Propulsion Technology., 31(2), 174–180. Zhang, Z., Zou, Z., Wang, Y., et al. (2010). Flutter prediction method applied in turbomachinery design. Beijing: Journal of Propulsion Technology., 31(2), 174–180.
61.
go back to reference Zhang, Z., Zou, Z., Wang, Y., et al. (2010). Investigation of flutter prediction method for transonic fan. Beijing: Journal of Aerospace Power, 25(3), 537–548. Zhang, Z., Zou, Z., Wang, Y., et al. (2010). Investigation of flutter prediction method for transonic fan. Beijing: Journal of Aerospace Power, 25(3), 537–548.
62.
go back to reference Huff, D. (2004). Technologies for turbofan noise reduction. NASA Glenn Research Center. Cleveland, Ohio, 10th AIAA/CEAS Aeroacoustics Conference Manchester, United Kingdom, 2004. Huff, D. (2004). Technologies for turbofan noise reduction. NASA Glenn Research Center. Cleveland, Ohio, 10th AIAA/CEAS Aeroacoustics Conference Manchester, United Kingdom, 2004.
63.
go back to reference Qiao, W. (2010). Aeroengine aeroacoustics. Beijing: Beihang University Press. Qiao, W. (2010). Aeroengine aeroacoustics. Beijing: Beihang University Press.
64.
go back to reference Nesbitt, E. (2011). Towards a quieter low pressure turbine: Design characteristics and prediction needs. International Journal of Aeroacoustics, 10(1), 1–16.CrossRef Nesbitt, E. (2011). Towards a quieter low pressure turbine: Design characteristics and prediction needs. International Journal of Aeroacoustics, 10(1), 1–16.CrossRef
65.
go back to reference Batard, H. (2005). Development of the quiet aircraft—Industrial needs in terms of aircraft noise and main achievements in Europe. Forum Acusticum 2005 International Conference, Budapest, Hungary. Batard, H. (2005). Development of the quiet aircraft—Industrial needs in terms of aircraft noise and main achievements in Europe. Forum Acusticum 2005 International Conference, Budapest, Hungary.
66.
go back to reference Mathews, D. C., Nagel, R. T., & Kester, J. D. (1975). Review of theory and methods for turbine noise prediction. AIAA Paper 75-540. Mathews, D. C., Nagel, R. T., & Kester, J. D. (1975). Review of theory and methods for turbine noise prediction. AIAA Paper 75-540.
67.
go back to reference Lavin, S. P., Ho, P. Y., & Chamberlin, R. (1984). Measurements and predictions of energy efficient engine noise. AIAA Paper 84-2284. Lavin, S. P., Ho, P. Y., & Chamberlin, R. (1984). Measurements and predictions of energy efficient engine noise. AIAA Paper 84-2284.
68.
go back to reference Sun, X., & Zhou, S. (1994). Aeroacoustics. Beijing: National Defense Industry Press. Sun, X., & Zhou, S. (1994). Aeroacoustics. Beijing: National Defense Industry Press.
69.
go back to reference Dai, X., Jing, X., & Sun, X. (2011). Nonlinear acoustic dissipation mechanism of a slit resonator. Beijing: Journal of Aerospace Power, 26(3), 530–536. Dai, X., Jing, X., & Sun, X. (2011). Nonlinear acoustic dissipation mechanism of a slit resonator. Beijing: Journal of Aerospace Power, 26(3), 530–536.
70.
go back to reference Tyler, J. M. &, Sofrin, T. G. (1962). Axial flow compressor noise studies. SAE Technical Paper 620532. Tyler, J. M. &, Sofrin, T. G. (1962). Axial flow compressor noise studies. SAE Technical Paper 620532.
71.
go back to reference Enghardt, L., Moreau, A., Tapken, U., et al. (2009). Radial mode decomposition in the outlet of a LP turbine-estimation of the relative importance of broadband noise. AIAA Paper 2009-3286. Enghardt, L., Moreau, A., Tapken, U., et al. (2009). Radial mode decomposition in the outlet of a LP turbine-estimation of the relative importance of broadband noise. AIAA Paper 2009-3286.
72.
go back to reference Lowson, M. V. (1970). Theoretical analysis of compressor noise. Journal of the Acoustical Society of America, 47(1), 371–385.CrossRef Lowson, M. V. (1970). Theoretical analysis of compressor noise. Journal of the Acoustical Society of America, 47(1), 371–385.CrossRef
73.
go back to reference Tan, H., Qiao, W., Zhao, L., et al. (2012). Aerodynamics/acoustics integration design method of low pressure turbine-overall parameters optimization. Beijing: Journal of Propulsion Technology., 33(4), 573–578. Tan, H., Qiao, W., Zhao, L., et al. (2012). Aerodynamics/acoustics integration design method of low pressure turbine-overall parameters optimization. Beijing: Journal of Propulsion Technology., 33(4), 573–578.
74.
go back to reference Enghardt, L., Tapken, U., Neise, W., et al. (2001). Turbine blade/vane interaction noise: Acoustic mode analysis using in-duct sensor rakes. AIAA Paper 2001-2153. Enghardt, L., Tapken, U., Neise, W., et al. (2001). Turbine blade/vane interaction noise: Acoustic mode analysis using in-duct sensor rakes. AIAA Paper 2001-2153.
75.
go back to reference Broszat, D., Korte, D., Tapken, U., et al. (2009). Validation of turbine noise prediction tools with acoustic rig measurements. AIAA Paper 2009-3283. Broszat, D., Korte, D., Tapken, U., et al. (2009). Validation of turbine noise prediction tools with acoustic rig measurements. AIAA Paper 2009-3283.
76.
go back to reference Broszat, D., Kennepohl, F., Tapken, U., et al. (2010). Validation of an acoustically 3D designed turbine exit guide vane. AIAA Paper 2010-3806. Broszat, D., Kennepohl, F., Tapken, U., et al. (2010). Validation of an acoustically 3D designed turbine exit guide vane. AIAA Paper 2010-3806.
77.
go back to reference Zhao, L., Qiao, W., Tan, H. (2013). Aerodynamic-acoustic Three-dimensional Numerical Optimization of Low Pressure Turbine: Lean Vane Strategy. Beijing: Acta Aeronautica et Astronautica Sinca, 34(2): 246–254. Zhao, L., Qiao, W., Tan, H. (2013). Aerodynamic-acoustic Three-dimensional Numerical Optimization of Low Pressure Turbine: Lean Vane Strategy. Beijing: Acta Aeronautica et Astronautica Sinca, 34(2): 246–254.
78.
go back to reference Zhao, L. (2012). Theory and method investigation of the aerodynamic-acoustics integration design in turbine. Xi’an: Northwestern Polytechnical University. Zhao, L. (2012). Theory and method investigation of the aerodynamic-acoustics integration design in turbine. Xi’an: Northwestern Polytechnical University.
79.
go back to reference Blaszczak, J. R. (2008). Performance improvement and noise reduction through vane and blade indexing of a two-stage turbine. AIAA Paper 2008–2941. Blaszczak, J. R. (2008). Performance improvement and noise reduction through vane and blade indexing of a two-stage turbine. AIAA Paper 2008–2941.
80.
go back to reference Yue, Z., Li, L., Yu, K., et al. (2007). Multidisciplinary design optimization of aeroengine turbine blades. Beijing: Science Press. Yue, Z., Li, L., Yu, K., et al. (2007). Multidisciplinary design optimization of aeroengine turbine blades. Beijing: Science Press.
81.
go back to reference Talya, S. S., Chattopadhyay, A., & Rajadas, J. N. (2000). Multidisciplinary analysis and design optimization procedure for cooled gas turbine blades. AIAA Paper 2000-4877. Talya, S. S., Chattopadhyay, A., & Rajadas, J. N. (2000). Multidisciplinary analysis and design optimization procedure for cooled gas turbine blades. AIAA Paper 2000-4877.
82.
go back to reference Chi, Z., Ren, J., & Jiang, H. (2013). Coupled aerothermodynamics optimization for the cooling system of a turbine vane. Journal of Turbomachinery, 136, 051008.CrossRef Chi, Z., Ren, J., & Jiang, H. (2013). Coupled aerothermodynamics optimization for the cooling system of a turbine vane. Journal of Turbomachinery, 136, 051008.CrossRef
83.
go back to reference Wang, R., Jia, Z., Hu, D., et al. (2013). Multiple precision MDO strategy for turbine blade. Beijing: Journal of Aerospace Power, 28(5), 961–970. Wang, R., Jia, Z., Hu, D., et al. (2013). Multiple precision MDO strategy for turbine blade. Beijing: Journal of Aerospace Power, 28(5), 961–970.
Metadata
Title
Multidisciplinary Coupling Analysis and Design
Authors
Zhengping Zou
Songtao Wang
Huoxing Liu
Weihao Zhang
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5750-2_8

Premium Partner