Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Multiferroic Magnetoelectric Composites/Hybrids

Authors : Yongke Yan, Shashank Priya

Published in: Hybrid and Hierarchical Composite Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The multiferroic magnetoelectric (ME) effect describes the coupling between the electric and magnetic fields, and is defined as a generated electric polarization P in response to an externally applied magnetic field H (direct ME effect), or an induced magnetization M with an applied electric field E (converse ME effect). Unfortunately, the ME coupling of all the known single-phase materials is usually small at room temperature to be practically applicable. Alternatively, multiferroic composites (ferroelectric and ferri/ferromagnetic phases) typically yield a giant ME coupling response above room temperature, which makes them attractive for technological applications. In the composites, the ME effect is generated as a product property of the magnetostrictive effect (magnetic/mechanical effect) and piezoelectric effect (mechanical/electric effect). To achieve a large ME response, piezoelectric constituent with a high piezoelectric coefficient, magnetostrictive constituent with a high piezomagnetic coefficient, and good coupling between the piezoelectric and magnetostrictive constituent are required. In this chapter, we begin with a brief overview of the development of each material’s constituent (piezoelectrics and magnetostriction) providing a list of state-of-the-art piezoelectric and magnetostrictive materials in multiferroic ME hybrid. Next, a discussion is provided on the composite structure and interface elastic coupling between the piezoelectric and magnetostrictive phases. After that we describe the fabrication process of several important ME hybrids with different phase connectivity, interface, and configuration. Considering the importance of nanostructure and 2–2-type ME composite, the scaling effect and theoretical modeling for these architectures are presented in some detail. Following these sections, some of the potential applications for ME hybrids are reviewed and illustrated by examples. Lastly, the chapter is concluded with a brief summary and future perspective.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bichurin MI, Petrov VM, Srinivasan G (2003) Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys Rev B 68: 054402 Bichurin MI, Petrov VM, Srinivasan G (2003) Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys Rev B 68: 054402
go back to reference Bichurin MI, Petrov VM, Averkin SV, Filippov AV (2010a) Electromechanical resonance in magnetoelectric layered structures. Phys Solid State 52(10):2116–2122CrossRef Bichurin MI, Petrov VM, Averkin SV, Filippov AV (2010a) Electromechanical resonance in magnetoelectric layered structures. Phys Solid State 52(10):2116–2122CrossRef
go back to reference Bichurin MI, Petrov VM, Averkin SV, Liverts E (2010b) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency and electromechanical resonance ranges. J Appl Phys 107: 053904 Bichurin MI, Petrov VM, Averkin SV, Liverts E (2010b) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency and electromechanical resonance ranges. J Appl Phys 107: 053904
go back to reference Bichurin MI, Petrov VM, Averkin SV, Liverts E (2010c) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part II: magnetic and magnetoacoustic resonance ranges. J Appl Phys 107: 053905 Bichurin MI, Petrov VM, Averkin SV, Liverts E (2010c) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part II: magnetic and magnetoacoustic resonance ranges. J Appl Phys 107: 053905
go back to reference Brown WF, Hornreich RM, Shtrikman S (1968) Upper bound on the magnetoelectric susceptibility. Phys Rev 168(2):574–577CrossRef Brown WF, Hornreich RM, Shtrikman S (1968) Upper bound on the magnetoelectric susceptibility. Phys Rev 168(2):574–577CrossRef
go back to reference Cho KH, Park CS, Priya S (2010) Effect of intensive and extensive loss factors on the dynamic response of magnetoelectric laminates. Appl Phys Lett 97: 182902 Cho KH, Park CS, Priya S (2010) Effect of intensive and extensive loss factors on the dynamic response of magnetoelectric laminates. Appl Phys Lett 97: 182902
go back to reference Clarke R, Whatmore WR (1976) The growth and characterization of Pzt. J Cryst Growth 33:29–38CrossRef Clarke R, Whatmore WR (1976) The growth and characterization of Pzt. J Cryst Growth 33:29–38CrossRef
go back to reference Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61(9):1267–1324CrossRef Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61(9):1267–1324CrossRef
go back to reference Deng C, Zhang Y, Ma J, Lin Y, Nan C-W (2008) Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3-NiFe2O4 composite thin films. Acta Mater 56(3):405–412CrossRef Deng C, Zhang Y, Ma J, Lin Y, Nan C-W (2008) Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3-NiFe2O4 composite thin films. Acta Mater 56(3):405–412CrossRef
go back to reference Dong SX, Li JF, Viehland D (2003) Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Trans Ultrason Ferroelectr Freq Control 50(10):1253–1261CrossRef Dong SX, Li JF, Viehland D (2003) Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Trans Ultrason Ferroelectr Freq Control 50(10):1253–1261CrossRef
go back to reference Dong SX, Li JF, Viehland D (2004) A longitudinal-longitudinal mode TERFENOL-D/Pb(Mg1/3Nb2/3)O-3-PbTiO3 laminate composite. Appl Phys Lett 85(22):5305–5306CrossRef Dong SX, Li JF, Viehland D (2004) A longitudinal-longitudinal mode TERFENOL-D/Pb(Mg1/3Nb2/3)O-3-PbTiO3 laminate composite. Appl Phys Lett 85(22):5305–5306CrossRef
go back to reference Dong SX, Zhai JY, Li JF, Viehland D (2006) Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2–1) connectivity. Appl Phys Lett 89: 252904 Dong SX, Zhai JY, Li JF, Viehland D (2006) Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2–1) connectivity. Appl Phys Lett 89: 252904
go back to reference Engdahl G (2000) Handbook of giant magnetostrictive materials. Academic Press, San Diego Engdahl G (2000) Handbook of giant magnetostrictive materials. Academic Press, San Diego
go back to reference Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84(23):5423–5426CrossRef Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84(23):5423–5426CrossRef
go back to reference Harshe GR (1991) Magnetoelectric effect in piezoelectric-magnetostrictive composites, vol 9204210. The Pennsylvania State University, Ann Arbor, pp 299–99 Harshe GR (1991) Magnetoelectric effect in piezoelectric-magnetostrictive composites, vol 9204210. The Pennsylvania State University, Ann Arbor, pp 299–99
go back to reference Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104(29):6694–6709CrossRef Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104(29):6694–6709CrossRef
go back to reference Huan Y, Wang XH, Fang J, Li LT (2014) Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J Eur Ceram Soc 34(5):1445–1448CrossRef Huan Y, Wang XH, Fang J, Li LT (2014) Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J Eur Ceram Soc 34(5):1445–1448CrossRef
go back to reference Islam RA (2008) Composition-microstructure-property relationships in dual phase bulk magnetoelectric composite, vol 3310386. The University of Texas at Arlington, Ann Arbor, pp 244 Islam RA (2008) Composition-microstructure-property relationships in dual phase bulk magnetoelectric composite, vol 3310386. The University of Texas at Arlington, Ann Arbor, pp 244
go back to reference Islam RA, Bedekar V, Poudyal N, Liu JP, Priya S (2008) Magnetoelectric properties of core-shell particulate nanocomposites. J Appl Phys 104: 104111 Islam RA, Bedekar V, Poudyal N, Liu JP, Priya S (2008) Magnetoelectric properties of core-shell particulate nanocomposites. J Appl Phys 104: 104111
go back to reference Israel C, Mathur ND, Scott JF (2008) A one-cent room-temperature magnetoelectric sensor. Nat Mater 7(2):93–94CrossRef Israel C, Mathur ND, Scott JF (2008) A one-cent room-temperature magnetoelectric sensor. Nat Mater 7(2):93–94CrossRef
go back to reference Jaffe B (1971) Piezoelectric ceramics. Academic Press, London, p ix, 317 Jaffe B (1971) Piezoelectric ceramics. Academic Press, London, p ix, 317
go back to reference Laletin VM, Paddubnaya N, Srinivasan G, De Vreugd CP, Bichurin MI, Petrov VM, Filippov DA (2005) Frequency and field dependence of magnetoelectric interactions in layered ferromagnetic transition metal-piezoelectric lead zirconate titanate. Appl Phys Lett 87: 222507 Laletin VM, Paddubnaya N, Srinivasan G, De Vreugd CP, Bichurin MI, Petrov VM, Filippov DA (2005) Frequency and field dependence of magnetoelectric interactions in layered ferromagnetic transition metal-piezoelectric lead zirconate titanate. Appl Phys Lett 87: 222507
go back to reference Leontsev SO, Eitel RE (2010) Progress in engineering high strain lead-free piezoelectric ceramics. Sci Technol Adv Mat 11: 044302 Leontsev SO, Eitel RE (2010) Progress in engineering high strain lead-free piezoelectric ceramics. Sci Technol Adv Mat 11: 044302
go back to reference Liu WF, Ren XB (2009) Large piezoelectric effect in Pb-Free ceramics. Phys Rev Lett 103: 257602 Liu WF, Ren XB (2009) Large piezoelectric effect in Pb-Free ceramics. Phys Rev Lett 103: 257602
go back to reference Liu D, Yan YK, Zhou HP (2007) Synthesis of micron-scale platelet BaTiO3. J Am Ceram Soc 90(4):1323–1326CrossRef Liu D, Yan YK, Zhou HP (2007) Synthesis of micron-scale platelet BaTiO3. J Am Ceram Soc 90(4):1323–1326CrossRef
go back to reference Liu R, Zhao Y, Huang R, Zhao Y, Zhou H (2010) Multiferroic ferrite/perovskite oxide core/shell nanostructures. J Mater Chem 20(47):10665–10670CrossRef Liu R, Zhao Y, Huang R, Zhao Y, Zhou H (2010) Multiferroic ferrite/perovskite oxide core/shell nanostructures. J Mater Chem 20(47):10665–10670CrossRef
go back to reference Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J Inorg Nucl Chem 9(2):113–123CrossRef Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J Inorg Nucl Chem 9(2):113–123CrossRef
go back to reference Ma J, Shi Z, Nan C-W (2007) Magnetoelectric properties of composites of single Pb(Zr, Ti)O-3 rods and Terfenol-D/epoxy with a single-period of 1–3-type structure. Adv Mater 19(18):2571–2573CrossRef Ma J, Shi Z, Nan C-W (2007) Magnetoelectric properties of composites of single Pb(Zr, Ti)O-3 rods and Terfenol-D/epoxy with a single-period of 1–3-type structure. Adv Mater 19(18):2571–2573CrossRef
go back to reference Ma J, Hu JM, Li Z, Nan CW (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23(9):1062–10687CrossRef Ma J, Hu JM, Li Z, Nan CW (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23(9):1062–10687CrossRef
go back to reference Mandal SK, Sreenivasulu G, Petrov VM, Srinivasan G (2010) Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl Phys Lett 96: 192502 Mandal SK, Sreenivasulu G, Petrov VM, Srinivasan G (2010) Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl Phys Lett 96: 192502
go back to reference Martin LW (2010) Engineering functionality in the multiferroic BiFeO3—controlling chemistry to enable advanced applications. Dalton Trans 39(45):10813–10826CrossRef Martin LW (2010) Engineering functionality in the multiferroic BiFeO3—controlling chemistry to enable advanced applications. Dalton Trans 39(45):10813–10826CrossRef
go back to reference Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State 29(2):45–96CrossRef Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State 29(2):45–96CrossRef
go back to reference Molegraaf HJA, Hoffman J, Vaz CAF, Gariglio S, van der Marel D, Ahn CH, Triscone J-M (2009) Magnetoelectric effects in complex oxides with competing ground states. Adv Mater 21(34):3470CrossRef Molegraaf HJA, Hoffman J, Vaz CAF, Gariglio S, van der Marel D, Ahn CH, Triscone J-M (2009) Magnetoelectric effects in complex oxides with competing ground states. Adv Mater 21(34):3470CrossRef
go back to reference Nan CW (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37(1):1–116CrossRef Nan CW (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37(1):1–116CrossRef
go back to reference Nan CW, Li M, Huang JH (2001) Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers. Phys Rev B 63: 144415 Nan CW, Li M, Huang JH (2001) Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers. Phys Rev B 63: 144415
go back to reference Nan CW, Bichurin MI, Dong SX, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103: 031101 Nan CW, Bichurin MI, Dong SX, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103: 031101
go back to reference Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, Oxford Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, Oxford
go back to reference Newnham RE, Skinner DP, Cross LE (1978) Connectivity and Piezoelectric-Pyroelectric composites. Mater Res Bull 13(5):525–536CrossRef Newnham RE, Skinner DP, Cross LE (1978) Connectivity and Piezoelectric-Pyroelectric composites. Mater Res Bull 13(5):525–536CrossRef
go back to reference Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press; Oxford University Press, Oxford Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press; Oxford University Press, Oxford
go back to reference O’Dell TH (1963) The field invariants in a magnetoelectric medium. Phila Mag 8:411–418CrossRef O’Dell TH (1963) The field invariants in a magnetoelectric medium. Phila Mag 8:411–418CrossRef
go back to reference Onuta T-D, Wang Y, Long CJ, Takeuchi I (2011) Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl Phys Lett 99: 203506 Onuta T-D, Wang Y, Long CJ, Takeuchi I (2011) Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl Phys Lett 99: 203506
go back to reference Park CS, Priya S (2011) Cofired magnetoelectric laminate composites. J Am Ceram Soc 94(4):1087–1095CrossRef Park CS, Priya S (2011) Cofired magnetoelectric laminate composites. J Am Ceram Soc 94(4):1087–1095CrossRef
go back to reference Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811CrossRef Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811CrossRef
go back to reference Park C-S, Ryu J, Choi J-J, Park D-S, Ahn C-W, Priya S (2009) Giant Magnetoelectric coefficient in 3–2 nanocomposite thick films. Japanese J Appl Phys 48: 080204 Park C-S, Ryu J, Choi J-J, Park D-S, Ahn C-W, Priya S (2009) Giant Magnetoelectric coefficient in 3–2 nanocomposite thick films. Japanese J Appl Phys 48: 080204
go back to reference Petrov VM, Srinivasan G, Bichurin MI, Galkina TA (2009) Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers. J Appl Phys 105: 063911 Petrov VM, Srinivasan G, Bichurin MI, Galkina TA (2009) Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers. J Appl Phys 105: 063911
go back to reference Piorra A, Jahns R, Teliban I, Gugat JL, Gerken M, Knoechel R, Quandt E (2013) Magnetoelectric thin film composites with interdigital electrodes. Appl Phys Lett 103: 032902 Piorra A, Jahns R, Teliban I, Gugat JL, Gerken M, Knoechel R, Quandt E (2013) Magnetoelectric thin film composites with interdigital electrodes. Appl Phys Lett 103: 032902
go back to reference Priya S, Islam R, Dong S, Viehland D (2007) Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram 19(1):149–166CrossRef Priya S, Islam R, Dong S, Viehland D (2007) Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram 19(1):149–166CrossRef
go back to reference Priya S, Ryu J, Park CS, Oliver J, Choi JJ, Park DS (2009) Piezoelectric and magnetoelectric thick films for fabricating power sources in wireless sensor nodes. Sensors 9(8):6362–6384CrossRef Priya S, Ryu J, Park CS, Oliver J, Choi JJ, Park DS (2009) Piezoelectric and magnetoelectric thick films for fabricating power sources in wireless sensor nodes. Sensors 9(8):6362–6384CrossRef
go back to reference Randall CA, Kim N, Kucera JP, Cao WW, Shrout TR (1998) Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J Am Ceram Soc 81(3):677–688CrossRef Randall CA, Kim N, Kucera JP, Cao WW, Shrout TR (1998) Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J Am Ceram Soc 81(3):677–688CrossRef
go back to reference Ryu J, Carazo AV, Uchino K, Kim HE (2001) Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-Ferrite particulate composites. J Electroceram 7(1):17–24CrossRef Ryu J, Carazo AV, Uchino K, Kim HE (2001) Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-Ferrite particulate composites. J Electroceram 7(1):17–24CrossRef
go back to reference Ryu H, Murugavel P, Lee JH, Chae SC, Noh TW, Oh YS, Kim HJ, Kim KH, Jang JH, Kim M, Bae C, Park JG (2006) Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O-3-NiFe2O4 composite films. Appl Phys Lett 89: 102907 Ryu H, Murugavel P, Lee JH, Chae SC, Noh TW, Oh YS, Kim HJ, Kim KH, Jang JH, Kim M, Bae C, Park JG (2006) Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O-3-NiFe2O4 composite films. Appl Phys Lett 89: 102907
go back to reference Sandlund L, Fahlander M, Cedell T, Clark AE, Restorff JB, Wun-Fogle M (1994) Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D. J Appl Phys 75(10):5656–5658CrossRef Sandlund L, Fahlander M, Cedell T, Clark AE, Restorff JB, Wun-Fogle M (1994) Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D. J Appl Phys 75(10):5656–5658CrossRef
go back to reference Schileo G (2013) Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol-gel routes. Prog Solid State Chem 41(4):87–98CrossRef Schileo G (2013) Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol-gel routes. Prog Solid State Chem 41(4):87–98CrossRef
go back to reference Scott JF (2012) Applications of magnetoelectrics. J Mater Chem 22(11):4567–4574CrossRef Scott JF (2012) Applications of magnetoelectrics. J Mater Chem 22(11):4567–4574CrossRef
go back to reference Shi Z, Nan CW, Zhang J, Cai N, Li JF (2005) Magnetoelectric effect of Pb(Zr, Ti)O-3 rod arrays in a (Tb, Dy)Fe-2/epoxy medium. Appl Phys Lett 87: 012503 Shi Z, Nan CW, Zhang J, Cai N, Li JF (2005) Magnetoelectric effect of Pb(Zr, Ti)O-3 rod arrays in a (Tb, Dy)Fe-2/epoxy medium. Appl Phys Lett 87: 012503
go back to reference Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309(5733):391–392CrossRef Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309(5733):391–392CrossRef
go back to reference Srinivasan G (2010) Magnetoelectric Composites, pp 153–78. in Annual Review of Materials Research, Vol 40, Annual Review of Materials Research. Annual Reviews, Palo Alto, 2010 Srinivasan G (2010) Magnetoelectric Composites, pp 153–78. in Annual Review of Materials Research, Vol 40, Annual Review of Materials Research. Annual Reviews, Palo Alto, 2010
go back to reference Srinivasan G, Sun NX (2012) Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 02(03):1240004CrossRef Srinivasan G, Sun NX (2012) Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 02(03):1240004CrossRef
go back to reference Srinivasan G, Rasmussen ET, Gallegos J, Srinivasan R, Bokhan YI, Laletin VM (2001) Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys Rev B 64: 214408 Srinivasan G, Rasmussen ET, Gallegos J, Srinivasan R, Bokhan YI, Laletin VM (2001) Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys Rev B 64: 214408
go back to reference Srinivasan G, Rasmussen ET, Levin BJ, Hayes R (2002) Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys Rev B 65: 134402 Srinivasan G, Rasmussen ET, Levin BJ, Hayes R (2002) Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys Rev B 65: 134402
go back to reference Uchino K (2010) Ferroelectric devices, 2nd ed. CRC, Boca Raton, p xix, 347 Uchino K (2010) Ferroelectric devices, 2nd ed. CRC, Boca Raton, p xix, 347
go back to reference Uchino K, Sadanaga E, Hirose T (1989) Dependence of the crystal-structure on particle-size in Barium-Titanate. J Am Ceram Soc 72(8):1555–1558CrossRef Uchino K, Sadanaga E, Hirose T (1989) Dependence of the crystal-structure on particle-size in Barium-Titanate. J Am Ceram Soc 72(8):1555–1558CrossRef
go back to reference Vaz CAF, Hoffman J, Anh CH, Ramesh R (2010) Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater 22(26–27):2900–2918CrossRef Vaz CAF, Hoffman J, Anh CH, Ramesh R (2010) Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater 22(26–27):2900–2918CrossRef
go back to reference Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58(4):321–448CrossRef Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58(4):321–448CrossRef
go back to reference Wang YJ, Gray D, Berry D, Gao JQ, Li MH, Li JF, Viehland D (2011) An extremely low equivalent magnetic noise magnetoelectric sensor. Adv Mater 23(35):4111CrossRef Wang YJ, Gray D, Berry D, Gao JQ, Li MH, Li JF, Viehland D (2011) An extremely low equivalent magnetic noise magnetoelectric sensor. Adv Mater 23(35):4111CrossRef
go back to reference Wang YJ, Gray D, Berry D, Li MH, Gao JQ, Li JF, Viehland D (2012) Influence of interfacial bonding condition on magnetoelectric properties in piezofiber/Metglas heterostructures. J Alloys Compd 513:242–244CrossRef Wang YJ, Gray D, Berry D, Li MH, Gao JQ, Li JF, Viehland D (2012) Influence of interfacial bonding condition on magnetoelectric properties in piezofiber/Metglas heterostructures. J Alloys Compd 513:242–244CrossRef
go back to reference Wang YJ, Gao JQ, Li MH, Shen Y, Hasanyan D, Li JF, Viehland D (2014) A review on equivalent magnetic noise of magnetoelectric laminate sensors. Philos Trans R Soc a-Math Phys Eng Sci 372: 20120455 Wang YJ, Gao JQ, Li MH, Shen Y, Hasanyan D, Li JF, Viehland D (2014) A review on equivalent magnetic noise of magnetoelectric laminate sensors. Philos Trans R Soc a-Math Phys Eng Sci 372: 20120455
go back to reference Wilkie WK, Bryant RG, High JW, Fox RL, Hellbaum RF, Jalink A, Little BD, Mirick PH (2000) Low-cost piezocomposite actuator for structural control applications. pp. 323–334. in smart structures and material 2000: industrial and commercial applications of smart structures technologies, Vol. 3991. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Edited by J. H. Jacobs, 2000. Wilkie WK, Bryant RG, High JW, Fox RL, Hellbaum RF, Jalink A, Little BD, Mirick PH (2000) Low-cost piezocomposite actuator for structural control applications. pp. 323–334. in smart structures and material 2000: industrial and commercial applications of smart structures technologies, Vol. 3991. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Edited by J. H. Jacobs, 2000.
go back to reference Xing Z, Dong S, Zhai J, Yan L, Li J, Viehland D (2006) Resonant bending mode of Terfenol-D/steel/Pb(Zr, Ti)O3 magnetoelectric laminate composites. Appl Phys Lett 89: 112911 Xing Z, Dong S, Zhai J, Yan L, Li J, Viehland D (2006) Resonant bending mode of Terfenol-D/steel/Pb(Zr, Ti)O3 magnetoelectric laminate composites. Appl Phys Lett 89: 112911
go back to reference Yan Y, Cho K-H, Priya S (2012a) Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics. Appl Phys Lett 100: 132908 Yan Y, Cho K-H, Priya S (2012a) Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics. Appl Phys Lett 100: 132908
go back to reference Yan YK, Wang YU, Priya S (2012b) Electromechanical behavior of 001-textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 ceramics. Appl Phys Lett 100: 192905 Yan YK, Wang YU, Priya S (2012b) Electromechanical behavior of 001-textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 ceramics. Appl Phys Lett 100: 192905
go back to reference Yan Y, Zhou Y, Gupta S, Priya S (2013a) Fatigue mechanism of textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 ceramics. Appl Phys Lett 103: 082906 Yan Y, Zhou Y, Gupta S, Priya S (2013a) Fatigue mechanism of textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 ceramics. Appl Phys Lett 103: 082906
go back to reference Yan YK, Cho KH, Maurya D, Kumar A, Kalinin S, Khachaturyan A, Priya S (2013b) Giant energy density in 001 -textured Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 piezoelectric ceramics. Appl Phys Lett 102: 042903 Yan YK, Cho KH, Maurya D, Kumar A, Kalinin S, Khachaturyan A, Priya S (2013b) Giant energy density in 001 -textured Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 piezoelectric ceramics. Appl Phys Lett 102: 042903
go back to reference Yan YK, Zhou Y, Priya S (2013c) Giant self-biased magnetoelectric coupling in co-fired textured layered composites. Appl Phys Lett 102: 052907 Yan YK, Zhou Y, Priya S (2013c) Giant self-biased magnetoelectric coupling in co-fired textured layered composites. Appl Phys Lett 102: 052907
go back to reference Yan Y, Zhou Y, Priya S (2014) Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O-3-PbTiO3 < 001 > (C) radially textured cylinders. Appl Phys Lett 104: 012910 Yan Y, Zhou Y, Priya S (2014) Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O-3-PbTiO3 < 001 > (C) radially textured cylinders. Appl Phys Lett 104: 012910
go back to reference Zhai J, Xing Z, Dong S, Li J, Viehland D (2008) Thermal noise cancellation in symmetric magnetoelectric bimorph laminates. Appl Phys Lett 93: 072906 Zhai J, Xing Z, Dong S, Li J, Viehland D (2008) Thermal noise cancellation in symmetric magnetoelectric bimorph laminates. Appl Phys Lett 93: 072906
go back to reference Zhang SJ, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys 111: 031301 Zhang SJ, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys 111: 031301
go back to reference Zhang SJ, Xia R, Shrout TR (2007) Lead-free piezoelectric ceramics vs. PZT? J Electroceram 19(4):251–257CrossRef Zhang SJ, Xia R, Shrout TR (2007) Lead-free piezoelectric ceramics vs. PZT? J Electroceram 19(4):251–257CrossRef
go back to reference Zheng H, Wang J, Mohaddes-Ardabili L, Wuttig M, Salamanca-Riba L, Schlom DG, Ramesh R (2004) Three-dimensional heteroepitaxy in self-assembled BaTiO3-CoFe2O4 nanostructures. Appl Phys Lett 85(11):2035–2037CrossRef Zheng H, Wang J, Mohaddes-Ardabili L, Wuttig M, Salamanca-Riba L, Schlom DG, Ramesh R (2004) Three-dimensional heteroepitaxy in self-assembled BaTiO3-CoFe2O4 nanostructures. Appl Phys Lett 85(11):2035–2037CrossRef
go back to reference Zhou Y, Apo DJ, Priya S (2013) Dual-phase self-biased magnetoelectric energy harvester. Appl Phys Lett 103: 192909 Zhou Y, Apo DJ, Priya S (2013) Dual-phase self-biased magnetoelectric energy harvester. Appl Phys Lett 103: 192909
Metadata
Title
Multiferroic Magnetoelectric Composites/Hybrids
Authors
Yongke Yan
Shashank Priya
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-12868-9_4

Premium Partners