Skip to main content
Top

2019 | OriginalPaper | Chapter

13. Multifunctional Hydrogels

Authors : Min Xu, Hailong Huang

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogels are cross-linked three-dimensional polymeric networks which can absorb a great quantity of water and keep mechanically stable without dissolution. Due to the biocompatibility and biodegradability, biological hydrogels have been wildly investigated and used in various fields, such as adsorption materials, shape memory materials, self-healing materials, sensor units, super capacitor, drug carriers, and so on. In this chapter, we would focus on some of the upper aspects and give a brief introduction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aimetti AA, Machen AJ, Anseth KS (2009) Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30:6048–6054CrossRef Aimetti AA, Machen AJ, Anseth KS (2009) Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30:6048–6054CrossRef
2.
go back to reference Bencherif SA, Siegwart DJ, Srinivasan A, Horkay F, Hollinger JO, Washburn NR, Matyjaszewski K (2009) Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 30:5270–5278CrossRef Bencherif SA, Siegwart DJ, Srinivasan A, Horkay F, Hollinger JO, Washburn NR, Matyjaszewski K (2009) Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 30:5270–5278CrossRef
3.
go back to reference Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119CrossRef Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119CrossRef
4.
go back to reference Freudenberg U, Liang Y, Kiick KL, Werner C (2016) Glycosaminoglycan-based biohybrid hydrogels: a sweet and smart choice for multifunctional biomaterials. Adv Mater 28:8861–8891CrossRef Freudenberg U, Liang Y, Kiick KL, Werner C (2016) Glycosaminoglycan-based biohybrid hydrogels: a sweet and smart choice for multifunctional biomaterials. Adv Mater 28:8861–8891CrossRef
5.
go back to reference Gong Y, Gao M, Wang D, Möhwald H (2005) Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: toward fluorescent microspheres with temperature-responsive properties. Chem Mater 17:2648–2653CrossRef Gong Y, Gao M, Wang D, Möhwald H (2005) Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: toward fluorescent microspheres with temperature-responsive properties. Chem Mater 17:2648–2653CrossRef
6.
go back to reference Xing B, Yu C, Chow K, Ho P, Fu D, Xu B (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124:14846–14847CrossRef Xing B, Yu C, Chow K, Ho P, Fu D, Xu B (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124:14846–14847CrossRef
7.
go back to reference Yu LHAY (2013) Directed self-assembly of microscale hydrogels by electrostatic interaction. Biofabrication 5:035004CrossRef Yu LHAY (2013) Directed self-assembly of microscale hydrogels by electrostatic interaction. Biofabrication 5:035004CrossRef
8.
go back to reference Osman SK, Brandl FP, Zayed GM, Teßmar JK, Göpferich AM (2011) Cyclodextrin based hydrogels: inclusion complex formation and micellization of adamantane and cholesterol grafted polymers. Polymer 52:4806–4812CrossRef Osman SK, Brandl FP, Zayed GM, Teßmar JK, Göpferich AM (2011) Cyclodextrin based hydrogels: inclusion complex formation and micellization of adamantane and cholesterol grafted polymers. Polymer 52:4806–4812CrossRef
9.
go back to reference Maity I, Mukherjee TK, Das AK (2014) Photophysical study of a stacked-sheet nanofibril forming peptide Bolaamphiphile hydrogel. New J Chem 38:376–385CrossRef Maity I, Mukherjee TK, Das AK (2014) Photophysical study of a stacked-sheet nanofibril forming peptide Bolaamphiphile hydrogel. New J Chem 38:376–385CrossRef
10.
go back to reference Buwalda SJ, Amgoune A, Bourissou D (2016) PEG–PLGA copolymers bearing carboxylated side chains: novel hydrogels with enhanced crosslinking via ionic interactions. J Polym Sci A Polym Chem 54:1222–1227CrossRef Buwalda SJ, Amgoune A, Bourissou D (2016) PEG–PLGA copolymers bearing carboxylated side chains: novel hydrogels with enhanced crosslinking via ionic interactions. J Polym Sci A Polym Chem 54:1222–1227CrossRef
11.
go back to reference Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510–9516CrossRef Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510–9516CrossRef
12.
go back to reference Garcia-Schwarz G, Santiago JG (2012) Integration of on-chip isotachophoresis and functionalized hydrogels for enhanced-sensitivity nucleic acid detection. Anal Chem 84: 6366–6369CrossRef Garcia-Schwarz G, Santiago JG (2012) Integration of on-chip isotachophoresis and functionalized hydrogels for enhanced-sensitivity nucleic acid detection. Anal Chem 84: 6366–6369CrossRef
13.
go back to reference Guillon M, Bilton S, Bleshoy H, Guillon JP, Lydon DPM (1985) Limbal changes associated with hydrogelcontact lens wear. J Br Cont Lens Assoc 8:15–19CrossRef Guillon M, Bilton S, Bleshoy H, Guillon JP, Lydon DPM (1985) Limbal changes associated with hydrogelcontact lens wear. J Br Cont Lens Assoc 8:15–19CrossRef
14.
go back to reference Murakami K, Aoki H, Nakamura S, Nakamura S, Takikawa M, Hanzawa M, Kishimoto S, Hattori H, Tanaka Y, Kiyosawa T, Sato Y, Ishihara M (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRef Murakami K, Aoki H, Nakamura S, Nakamura S, Takikawa M, Hanzawa M, Kishimoto S, Hattori H, Tanaka Y, Kiyosawa T, Sato Y, Ishihara M (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRef
15.
go back to reference Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64CrossRef Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64CrossRef
16.
go back to reference Shahbuddin M, Bullock A, Macneil S, Rimmer S (2014) Glucomannan-poly(N-vinyl Pyrrolidinone) bicomponent hydrogels for wound healing. J Mater Chem B 2(6):727–738CrossRef Shahbuddin M, Bullock A, Macneil S, Rimmer S (2014) Glucomannan-poly(N-vinyl Pyrrolidinone) bicomponent hydrogels for wound healing. J Mater Chem B 2(6):727–738CrossRef
17.
go back to reference Yun J, Jin D, Lee Y, Kim H (2010) Photocatalytic treatment of acidic waste water by electrospun composite nanofibers of pH-sensitive hydrogel and TiO2. Mater Lett 64(22):2431–2434CrossRef Yun J, Jin D, Lee Y, Kim H (2010) Photocatalytic treatment of acidic waste water by electrospun composite nanofibers of pH-sensitive hydrogel and TiO2. Mater Lett 64(22):2431–2434CrossRef
18.
go back to reference Xiao M, Hu JC (2017) Cellulose/chitosan composites prepared in ethylene diamine/potassium thiocyanate for adsorption of heavy metal ions. Cellulose 24:2545–2557CrossRef Xiao M, Hu JC (2017) Cellulose/chitosan composites prepared in ethylene diamine/potassium thiocyanate for adsorption of heavy metal ions. Cellulose 24:2545–2557CrossRef
19.
go back to reference Wu SP, Dai XZ, Kan JR, Shilong FD, Zhu MY (2017) Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin Chem Lett 28:625–632CrossRef Wu SP, Dai XZ, Kan JR, Shilong FD, Zhu MY (2017) Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin Chem Lett 28:625–632CrossRef
20.
go back to reference Liu Z, Wang HS, Liu C, Jiang YJ, Yu G, Mu XD, Wang XY (2012) Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352CrossRef Liu Z, Wang HS, Liu C, Jiang YJ, Yu G, Mu XD, Wang XY (2012) Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352CrossRef
21.
go back to reference Ayoub A, Venditti RA, Pawlak JJ, Salam A, Hubbe MA (2013) Novel hemicellulose–chitosan biosorbent for water desalination and heavy metal removal. ACS Sustain Chem Eng 1: 1102–1109CrossRef Ayoub A, Venditti RA, Pawlak JJ, Salam A, Hubbe MA (2013) Novel hemicellulose–chitosan biosorbent for water desalination and heavy metal removal. ACS Sustain Chem Eng 1: 1102–1109CrossRef
22.
go back to reference Wei W, Kim S, Song MH, Bediako JK, Yun YS (2015) Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals. J Taiwan Inst Chem Eng 57:104–110CrossRef Wei W, Kim S, Song MH, Bediako JK, Yun YS (2015) Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals. J Taiwan Inst Chem Eng 57:104–110CrossRef
23.
go back to reference Ge H, Huang HL, Xu M, Chen Q (2016) Cellulose/poly(ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions. Cellulose 23:2527–2537CrossRef Ge H, Huang HL, Xu M, Chen Q (2016) Cellulose/poly(ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions. Cellulose 23:2527–2537CrossRef
24.
go back to reference Zhou YM, Fu SY, Zhang LL, Zhan HY, Mikhail VL (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82CrossRef Zhou YM, Fu SY, Zhang LL, Zhan HY, Mikhail VL (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82CrossRef
25.
go back to reference Luo XB, Guo B, Luo JM, Deng F, Zhang SY, Luo SL, John C (2015) Recovery of lithium from wastewater using development of li ion-imprinted polymers. ACS Sustain Chem Eng 3:460−467CrossRef Luo XB, Guo B, Luo JM, Deng F, Zhang SY, Luo SL, John C (2015) Recovery of lithium from wastewater using development of li ion-imprinted polymers. ACS Sustain Chem Eng 3:460−467CrossRef
26.
go back to reference Chen PP, Liu XY, Jin RD, Nie WY, Zhou YF (2017) Dye adsorption and photo-induced recycling of hydroxypropyl cellulose/molybdenum disulfide composite hydrogels. Carbohydr Polym 167:36–43CrossRef Chen PP, Liu XY, Jin RD, Nie WY, Zhou YF (2017) Dye adsorption and photo-induced recycling of hydroxypropyl cellulose/molybdenum disulfide composite hydrogels. Carbohydr Polym 167:36–43CrossRef
27.
go back to reference Rudzinski WE, Chipuk T, Dave AM, Kumbar SG, Aminabhavi TM (2003) pH-sensitive acrylic-based copolymeric hydrogels for the controlled release of a pesticide and a micronutrient. J Appl Polym Sci 87:394–403CrossRef Rudzinski WE, Chipuk T, Dave AM, Kumbar SG, Aminabhavi TM (2003) pH-sensitive acrylic-based copolymeric hydrogels for the controlled release of a pesticide and a micronutrient. J Appl Polym Sci 87:394–403CrossRef
28.
go back to reference Aouada FA, de Moura MA, Orts WJ, Mattoso LHC (2010) Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. J Mater Sci 45:4977–4985CrossRef Aouada FA, de Moura MA, Orts WJ, Mattoso LHC (2010) Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. J Mater Sci 45:4977–4985CrossRef
29.
go back to reference Abd El-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2012) Removal of some pesticides from aqueous solutions using PVP/(AAc-co-Sty) hydrogels prepared by gamma radiation. J Macromol Sci Part A Pure Appl Chem 49:814–827CrossRef Abd El-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2012) Removal of some pesticides from aqueous solutions using PVP/(AAc-co-Sty) hydrogels prepared by gamma radiation. J Macromol Sci Part A Pure Appl Chem 49:814–827CrossRef
30.
go back to reference Chen LY, Tian ZG, Du YM (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732CrossRef Chen LY, Tian ZG, Du YM (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732CrossRef
31.
go back to reference Hennink WE, Talsma H, Borchert JCH, De Smedt SC, Demeester J (1996) Controlled release of proteins from dextran hydrogels. J Control Release 39:47–55CrossRef Hennink WE, Talsma H, Borchert JCH, De Smedt SC, Demeester J (1996) Controlled release of proteins from dextran hydrogels. J Control Release 39:47–55CrossRef
32.
go back to reference Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888CrossRef Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888CrossRef
33.
go back to reference Shao S, Cui EM, Xue HM, Huang HY, Liu GL (2015) Sustained knock down of PPARγ and bFGF presentation in collagen hydrogels promote MSC osteogenesis. Open Life Sci 10(1):479–489 Shao S, Cui EM, Xue HM, Huang HY, Liu GL (2015) Sustained knock down of PPARγ and bFGF presentation in collagen hydrogels promote MSC osteogenesis. Open Life Sci 10(1):479–489
34.
go back to reference Jiang YJ, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985CrossRef Jiang YJ, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985CrossRef
35.
go back to reference Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60CrossRef Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60CrossRef
36.
go back to reference Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99CrossRef Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99CrossRef
37.
go back to reference Abureesh MA, Oladipo AA, Gazi M (2016) Facile synthesis of glucose-sensitive chitosan–poly(vinyl alcohol) hydrogel: drug release optimization and swelling properties. Int J Biol Macromol 90:75–80CrossRef Abureesh MA, Oladipo AA, Gazi M (2016) Facile synthesis of glucose-sensitive chitosan–poly(vinyl alcohol) hydrogel: drug release optimization and swelling properties. Int J Biol Macromol 90:75–80CrossRef
38.
go back to reference Zhang XZ, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 25:3793–3805CrossRef Zhang XZ, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 25:3793–3805CrossRef
39.
go back to reference Zhao CW, Zhuang XL, He P, Xiao CS, He CL, Sun JR, Chen XS, Jing XB (2009) Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer 50:4308–4316CrossRef Zhao CW, Zhuang XL, He P, Xiao CS, He CL, Sun JR, Chen XS, Jing XB (2009) Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer 50:4308–4316CrossRef
40.
go back to reference Huang HL, Wang XH, Ge H, Xu M (2016) Multifunctional magnetic cellulose surface-imprinted microspheres for highly selective adsorption of artesunate. ACS Sustain Chem Eng 4:3334–3343CrossRef Huang HL, Wang XH, Ge H, Xu M (2016) Multifunctional magnetic cellulose surface-imprinted microspheres for highly selective adsorption of artesunate. ACS Sustain Chem Eng 4:3334–3343CrossRef
41.
go back to reference Manal F, Abou T, Abdel-Aal SE, El-Kelesh NA, Hegazy ESA (2007) Adsorption and controlled release of chlortetracycline HCl by using multifunctional polymeric hydrogels. Eur Polym J 43:468–477CrossRef Manal F, Abou T, Abdel-Aal SE, El-Kelesh NA, Hegazy ESA (2007) Adsorption and controlled release of chlortetracycline HCl by using multifunctional polymeric hydrogels. Eur Polym J 43:468–477CrossRef
42.
go back to reference Lee YJ, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15:563–566CrossRef Lee YJ, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15:563–566CrossRef
43.
go back to reference Richter A, Paschew G, Klatt S, Lienig J, Arndt K, Adler PH (2008) Review on hydrogel-based pH sensors and microsensors. Sensors-Basel 8(1):561–581CrossRef Richter A, Paschew G, Klatt S, Lienig J, Arndt K, Adler PH (2008) Review on hydrogel-based pH sensors and microsensors. Sensors-Basel 8(1):561–581CrossRef
44.
go back to reference Killer M, Keeley EM, Cruise GM, Schmitt A, McCoy MR (2011) MR imaging of hydrogel filament embolic devices loaded with superparamagnetic Iron oxide or gadolinium. Neuroradiology 53(6):449–456CrossRef Killer M, Keeley EM, Cruise GM, Schmitt A, McCoy MR (2011) MR imaging of hydrogel filament embolic devices loaded with superparamagnetic Iron oxide or gadolinium. Neuroradiology 53(6):449–456CrossRef
45.
go back to reference Soto AM, Koivisto JT, Parraga JE, Silva-Correia J, Oliveira JM, Reis RL, Kellomäki M, Hyttinen J, Figueiras E (2016) Optical projection tomography technique for image texture and mass transport studies in hydrogels based on Gellan gum. Langmuir 32(20):5173–5182CrossRef Soto AM, Koivisto JT, Parraga JE, Silva-Correia J, Oliveira JM, Reis RL, Kellomäki M, Hyttinen J, Figueiras E (2016) Optical projection tomography technique for image texture and mass transport studies in hydrogels based on Gellan gum. Langmuir 32(20):5173–5182CrossRef
46.
go back to reference Takehara H, Nagaoka A, Noguchi J, Akagi T, Kasai H, Ichiki T (2016) Implantable microfluidic device with hydrogel permeable membrane for delivering chemical compounds and imaging neural cells in living mice. J Photopolym Sci Technol 29(4):513–518CrossRef Takehara H, Nagaoka A, Noguchi J, Akagi T, Kasai H, Ichiki T (2016) Implantable microfluidic device with hydrogel permeable membrane for delivering chemical compounds and imaging neural cells in living mice. J Photopolym Sci Technol 29(4):513–518CrossRef
47.
go back to reference Emileh A, Vasheghani-Farahani E, Imani M (2007) Swelling behavior, mechanical properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate). Eur Polym J 43(5):1986–1995CrossRef Emileh A, Vasheghani-Farahani E, Imani M (2007) Swelling behavior, mechanical properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate). Eur Polym J 43(5):1986–1995CrossRef
48.
go back to reference Luo RC, Cao Y, Shi P, Chen CH (2014) Near-infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface. Small 10(23):4886–4894CrossRef Luo RC, Cao Y, Shi P, Chen CH (2014) Near-infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface. Small 10(23):4886–4894CrossRef
49.
go back to reference Chen J, Sheng KX, Luo PH, Li C, Shi GQ (2012) Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv Mater 24:4569–4573CrossRef Chen J, Sheng KX, Luo PH, Li C, Shi GQ (2012) Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv Mater 24:4569–4573CrossRef
50.
go back to reference Kim SJ, Lee CK, Lee YM, Kim IY, Kim SI (2003) Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid–poly(vinyl alcohol) interpenetrating polymer networks. React Funct Polym 55(3):291–298CrossRef Kim SJ, Lee CK, Lee YM, Kim IY, Kim SI (2003) Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid–poly(vinyl alcohol) interpenetrating polymer networks. React Funct Polym 55(3):291–298CrossRef
51.
go back to reference Konieczynska MD, Grinstaff MW (2017) On-demand dissolution of chemically cross-linked hydrogels. Acc Chem Res 50:151–160 Konieczynska MD, Grinstaff MW (2017) On-demand dissolution of chemically cross-linked hydrogels. Acc Chem Res 50:151–160
52.
go back to reference Le XX, Lu W, Xiao H, Wang L, Ma CX, Zhang JW, Huang YJ, Chen T (2017) Fe3+-, pH-, thermoresponsive supramolecular hydrogel with multishape memory effect. ACS Appl Mater Interfaces 9:9038–9044CrossRef Le XX, Lu W, Xiao H, Wang L, Ma CX, Zhang JW, Huang YJ, Chen T (2017) Fe3+-, pH-, thermoresponsive supramolecular hydrogel with multishape memory effect. ACS Appl Mater Interfaces 9:9038–9044CrossRef
53.
go back to reference Xing YZ, Cheng EJ, Yang Y, Chen P, Zhang T, Sun YW, Yang ZQ, Liu DS (2011) Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater 23:1117–1121CrossRef Xing YZ, Cheng EJ, Yang Y, Chen P, Zhang T, Sun YW, Yang ZQ, Liu DS (2011) Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater 23:1117–1121CrossRef
54.
go back to reference João C, Nuria O, Mariana A, Song HS, Natalie A (2016) Self-assembled RNA-triple-helix hydrogel scafold for microRNA modulation in the tumour microenvironment. Nat Mater 15:353–363CrossRef João C, Nuria O, Mariana A, Song HS, Natalie A (2016) Self-assembled RNA-triple-helix hydrogel scafold for microRNA modulation in the tumour microenvironment. Nat Mater 15:353–363CrossRef
55.
go back to reference Zhang YL, Yang B, Zhang XY, Xu LX, Tao L, Li SX, Wei Y (2012) A magnetic self-healing hydrogel. Chem Commun 48:9305–9307CrossRef Zhang YL, Yang B, Zhang XY, Xu LX, Tao L, Li SX, Wei Y (2012) A magnetic self-healing hydrogel. Chem Commun 48:9305–9307CrossRef
56.
go back to reference Jia YG, Zhu XX (2015) Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants. Chem Mater 27:387–393CrossRef Jia YG, Zhu XX (2015) Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants. Chem Mater 27:387–393CrossRef
57.
go back to reference Ye X, Li X, Shen YQ, Chang GJ, Yang JX, Gu ZW (2017) Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 108:348–360CrossRef Ye X, Li X, Shen YQ, Chang GJ, Yang JX, Gu ZW (2017) Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 108:348–360CrossRef
58.
go back to reference Deniz CT, Murat S, Wilhelm O, Oguz O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRef Deniz CT, Murat S, Wilhelm O, Oguz O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRef
Metadata
Title
Multifunctional Hydrogels
Authors
Min Xu
Hailong Huang
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_15

Premium Partners