Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

12-10-2020 | Issue 1/2021

International Journal on Digital Libraries 1/2021

Multilabel graph-based classification for missing labels

Journal:
International Journal on Digital Libraries > Issue 1/2021
Authors:
Yasunobu Sumikawa, Tatsurou Miyazaki
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Assigning several labels to digital data is becoming easier as this can be achieved in a collaborative manner with Internet users. However, this process is still a challenge, especially in cases where several labels are assigned to each datum, as some suitable labels may be missed. The missing labels lead to inaccuracies in classification. In this study, we propose a novel graph-based multi-label classifier that exhibits stability for obtaining high-accuracy results; this is achieved even where there are missing labels in training data. The core process of our algorithm is to smoothen the label values of the training data from their top-k similar data by propagating their values and averaging them to generate values for the missing labels in the training data. In experimental evaluations, we used multi-labeled document and image datasets to evaluate classifiers, and then measured micro-averaged F-scores for eight classifiers. Even though we incrementally removed correct labels from the two datasets, the proposed algorithm tended to maintain the F-scores, whereas other classifiers decreased the scores. In addition, we evaluated the algorithm using Wikipedia, which comprises a real dataset that includes missing labels, in order to determine how well the algorithm predicted the correct labels and how useful it was for manual annotations, as initial decisions. We have confirmed that LPAC is useful for not only automatic annotation, but also the facilitation of decision making in the initial manual category assignment.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2021

International Journal on Digital Libraries 1/2021 Go to the issue

Premium Partner

    Image Credits