Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2023

14-03-2023

Multilevel Optimization of Complex Composite Structures with Variable Stiffness, Part I: Description of the Optimization Algorithm

Author: V. S. Symonov

Published in: Mechanics of Composite Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A multilevel hybrid optimization algorithm is proposed for the weight minimization of complex composite structures with variable stiffness. The key improvements of the algorithm in comparison with the previous ones are the simplification of laminate definition at the upper level using only three parameters, an original guide-based genetic algorithm, a one-dimensional search algorithm based on the “Golden section” method and adopted to integer variable, a parallel optimization, and a simplified upper-to-lower-level coordination procedure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Grihon, L. Krog, and D. Bassir, “Numerical optimization applied to structure sizing at AIRBUS: A multi-step process,” International Journal for Simulation and Multidisciplinary Design Optimization, 3, No. 4, 432-442 (2009).CrossRef S. Grihon, L. Krog, and D. Bassir, “Numerical optimization applied to structure sizing at AIRBUS: A multi-step process,” International Journal for Simulation and Multidisciplinary Design Optimization, 3, No. 4, 432-442 (2009).CrossRef
2.
go back to reference J. Sobieszczanski-Sobieski, B. B. James, and A. R. Dovi, “Structural optimization by multilevel decomposition,” AIAA Journal, 23, No. 11, 1775-1782 (1985).CrossRef J. Sobieszczanski-Sobieski, B. B. James, and A. R. Dovi, “Structural optimization by multilevel decomposition,” AIAA Journal, 23, No. 11, 1775-1782 (1985).CrossRef
3.
go back to reference J. Walsh, K. Young, J., I. Pritchard, et al., Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition. NASA Technical Paper 3465. Hampton, Virginia: Langley Research Center, National Aeronautic and Space Administration (1995). J. Walsh, K. Young, J., I. Pritchard, et al., Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition. NASA Technical Paper 3465. Hampton, Virginia: Langley Research Center, National Aeronautic and Space Administration (1995).
4.
go back to reference L. A. Schmit and M. Mehrinfar, “Multilevel optimum design of structures with fiber-composite stiffened-panel components,” AIAA Journal, 20, No. 1, 138–147 (1982).CrossRef L. A. Schmit and M. Mehrinfar, “Multilevel optimum design of structures with fiber-composite stiffened-panel components,” AIAA Journal, 20, No. 1, 138–147 (1982).CrossRef
5.
go back to reference P. Gasbarri, L. D. Chiwiacowsky, and H. F. de Campos Velho, “A hybrid multilevel approach for aeroelastic optimization of composite wing-box,” Structural Multidisciplinary Optimization, 39, No. 6, 607–624 (2009). P. Gasbarri, L. D. Chiwiacowsky, and H. F. de Campos Velho, “A hybrid multilevel approach for aeroelastic optimization of composite wing-box,” Structural Multidisciplinary Optimization, 39, No. 6, 607–624 (2009).
6.
go back to reference G. Duvaut, G. Terrel, F. Léné, et al., “Optimization of fiber reinforced composites,” Composite Structures, 48, No. 1-3, 83-89 (2000).CrossRef G. Duvaut, G. Terrel, F. Léné, et al., “Optimization of fiber reinforced composites,” Composite Structures, 48, No. 1-3, 83-89 (2000).CrossRef
7.
go back to reference Q. Zhao, Y. Ding, and H. Jin, “A layout optimization method of composite wing structures based on carrying efficiency criterion,” Chinese Journal of Aeronautics, 24, No. 4, 425-433 (2011).CrossRef Q. Zhao, Y. Ding, and H. Jin, “A layout optimization method of composite wing structures based on carrying efficiency criterion,” Chinese Journal of Aeronautics, 24, No. 4, 425-433 (2011).CrossRef
8.
go back to reference Y. Hailian and Y. Xiongqing, “Integration of manufacturing cost into structural optimization of composite wings,” Chinese Journal of Aeronautics, 23, No. 6, 670-676 (2010).CrossRef Y. Hailian and Y. Xiongqing, “Integration of manufacturing cost into structural optimization of composite wings,” Chinese Journal of Aeronautics, 23, No. 6, 670-676 (2010).CrossRef
9.
go back to reference T. Kam and J. A. Snyman, “Optimal design of laminated composite plates with dynamic and static considerations,” Computers & Structures, 32, No. 2, 387-393 (1989).CrossRef T. Kam and J. A. Snyman, “Optimal design of laminated composite plates with dynamic and static considerations,” Computers & Structures, 32, No. 2, 387-393 (1989).CrossRef
10.
go back to reference T. Kam and M. D. Lai, “Multilevel optimal design of laminated composite plate structures,” Computers & Structures, 31, No. 2, 197-202 (1989).CrossRef T. Kam and M. D. Lai, “Multilevel optimal design of laminated composite plate structures,” Computers & Structures, 31, No. 2, 197-202 (1989).CrossRef
11.
go back to reference R. I. Watkins and A. J. Morris, “A multicriteria objective function optimization scheme for laminated composites for use in multilevel structural optimization schemes,” Computer Methods in Applied Mechanics and Engineering, 60, No. 2, 233-251 (1987).CrossRef R. I. Watkins and A. J. Morris, “A multicriteria objective function optimization scheme for laminated composites for use in multilevel structural optimization schemes,” Computer Methods in Applied Mechanics and Engineering, 60, No. 2, 233-251 (1987).CrossRef
12.
go back to reference S. Guo, “Aeroelastic optimization of an aerobatic aircraft wing structure,” Aerospace Science and Technology, 11, No. 5, 396-404 (2007).CrossRef S. Guo, “Aeroelastic optimization of an aerobatic aircraft wing structure,” Aerospace Science and Technology, 11, No. 5, 396-404 (2007).CrossRef
13.
go back to reference O. Seresta, Z. Gürdal, D. B. Adams, and L. T. Watson, “Optimal design of composite wing structures with blended laminates,” Composites Part B: Engineering, 38, No. 4, 469-480 (2007).CrossRef O. Seresta, Z. Gürdal, D. B. Adams, and L. T. Watson, “Optimal design of composite wing structures with blended laminates,” Composites Part B: Engineering, 38, No. 4, 469-480 (2007).CrossRef
14.
go back to reference B. Diveyev, I. Butiter, and N. Shcherbina, “Identifying the elastic moduli of composite plates by using high-order theories. 2. Theoretical-experimental approach”, Mech. Compos. Mater., 44, No. 2, 139-144 (2008).CrossRef B. Diveyev, I. Butiter, and N. Shcherbina, “Identifying the elastic moduli of composite plates by using high-order theories. 2. Theoretical-experimental approach”, Mech. Compos. Mater., 44, No. 2, 139-144 (2008).CrossRef
15.
go back to reference D. Adams, L. T. Watson, O. Seresta, and Z. Gürdal, “Global/local iteration for blended composite laminate panel structure optimization subproblems,” Mechanics of Advanced Materials and Structures, 14, No. 2, 139-150 (2007).CrossRef D. Adams, L. T. Watson, O. Seresta, and Z. Gürdal, “Global/local iteration for blended composite laminate panel structure optimization subproblems,” Mechanics of Advanced Materials and Structures, 14, No. 2, 139-150 (2007).CrossRef
16.
go back to reference B. Liu, R. Haftka, and M. Akgun, “Composite wing structural optimization using genetic algorithms and response surfaces,” In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 2-4, 1998, St. Louis, MO, USA. B. Liu, R. Haftka, and M. Akgun, “Composite wing structural optimization using genetic algorithms and response surfaces,” In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 2-4, 1998, St. Louis, MO, USA.
17.
go back to reference N. Zehnder and P. Ermanni, “A methodology for the global optimization of laminated composite structures,” Composite Structures, 72, No. 3, 311-320 (2006).CrossRef N. Zehnder and P. Ermanni, “A methodology for the global optimization of laminated composite structures,” Composite Structures, 72, No. 3, 311-320 (2006).CrossRef
18.
go back to reference N. Zehnder and P. Ermanni, “Optimizing the shape and placement of patches of reinforcement fibers,” Composite Structures, 77, No. 1, 1-9 (2007).CrossRef N. Zehnder and P. Ermanni, “Optimizing the shape and placement of patches of reinforcement fibers,” Composite Structures, 77, No. 1, 1-9 (2007).CrossRef
19.
go back to reference J.-S. Kim, C.-G. Kim, and C.-S. Hong, “Optimum design of composite structures with ply drop using genetic algorithm and expert system shell,” Composite Structures, 46, No. 2, 171-187 (1999).CrossRef J.-S. Kim, C.-G. Kim, and C.-S. Hong, “Optimum design of composite structures with ply drop using genetic algorithm and expert system shell,” Composite Structures, 46, No. 2, 171-187 (1999).CrossRef
20.
go back to reference Z. B. Zabinsky, M. E. Tuttle, and C. Khompatraporn, “A Case study: Composite structure design optimization,” Ch. 21 in Global Optimization: Selected Cases Studied, N. Y., Springer (2006). Z. B. Zabinsky, M. E. Tuttle, and C. Khompatraporn, “A Case study: Composite structure design optimization,” Ch. 21 in Global Optimization: Selected Cases Studied, N. Y., Springer (2006).
21.
go back to reference B. Tatting and Z. Gürdal, “Analysis and design of tow-steered variable stiffness composite laminates,” In: American Helicopter Society: Structure Specialists’ Meeting, 2001, Williamsburg, VA, USA. B. Tatting and Z. Gürdal, “Analysis and design of tow-steered variable stiffness composite laminates,” In: American Helicopter Society: Structure Specialists’ Meeting, 2001, Williamsburg, VA, USA.
22.
go back to reference J. Huang and R.T. Haftka, “Optimization of fiber orientations near a hole for increased load-carrying capacity of composite laminates,” Structural and Multidisciplinary Optimization, 30, No. 5, 335-341 (2005).CrossRef J. Huang and R.T. Haftka, “Optimization of fiber orientations near a hole for increased load-carrying capacity of composite laminates,” Structural and Multidisciplinary Optimization, 30, No. 5, 335-341 (2005).CrossRef
23.
go back to reference H. Ghiasi, D. Pasini, and L. Lessard, “Optimum stacking sequence design of composite materials Part I: Constant stiffness design,” Composite Structures, 90, No. 1, 1-11 (2009).CrossRef H. Ghiasi, D. Pasini, and L. Lessard, “Optimum stacking sequence design of composite materials Part I: Constant stiffness design,” Composite Structures, 90, No. 1, 1-11 (2009).CrossRef
24.
go back to reference Z. K. Awad, T. Aravinthan, Y. Zhuge, and F. Gonzalez, “A review of optimization techniques used in the design of fibre composite structures for civil engineering applications,” Materials & Design, 33, 534-544 (2012).CrossRef Z. K. Awad, T. Aravinthan, Y. Zhuge, and F. Gonzalez, “A review of optimization techniques used in the design of fibre composite structures for civil engineering applications,” Materials & Design, 33, 534-544 (2012).CrossRef
25.
go back to reference H. Ghiasi, K. Fayazbakhsh, D. Pasini, and L. Lessard, “Optimum stacking sequence design of composite materials Part II: Variable stiffness design,” Composite Structures, 93, No. 1, 1-13 (2010).CrossRef H. Ghiasi, K. Fayazbakhsh, D. Pasini, and L. Lessard, “Optimum stacking sequence design of composite materials Part II: Variable stiffness design,” Composite Structures, 93, No. 1, 1-13 (2010).CrossRef
26.
go back to reference J. Kers and J. Majak, “Modelling a new composite from a recycled GFRP”, Mech. Compos. Mater., 44, No. 6, 623-632 (2008).CrossRef J. Kers and J. Majak, “Modelling a new composite from a recycled GFRP”, Mech. Compos. Mater., 44, No. 6, 623-632 (2008).CrossRef
27.
go back to reference D. Cui and D. K. Li, “Optimization of extension-shear coupled laminates based on the differential evolution algorithm”, Mech. Compos. Mater., 54, No. 6, 799-814 (2019).CrossRef D. Cui and D. K. Li, “Optimization of extension-shear coupled laminates based on the differential evolution algorithm”, Mech. Compos. Mater., 54, No. 6, 799-814 (2019).CrossRef
28.
go back to reference D. Liu, V. Toropov, M. Zhou, D. Barton, and O. Querin, “Optimization of blended composite wing panels using smeared stiffness technique and lamination parameters,” In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 9-12, 2010, Orlando, Florida, USA. D. Liu, V. Toropov, M. Zhou, D. Barton, and O. Querin, “Optimization of blended composite wing panels using smeared stiffness technique and lamination parameters,” In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 9-12, 2010, Orlando, Florida, USA.
29.
go back to reference V. S. Symonov, I. S. Karpov, and J. Juračka, “Optimization of a panelled smooth composite shell with a closed crosssectional contour by using a genetic algorithm,” Mech. Compos. Mater., 49, No. 5, 563-570 (2013).CrossRef V. S. Symonov, I. S. Karpov, and J. Juračka, “Optimization of a panelled smooth composite shell with a closed crosssectional contour by using a genetic algorithm,” Mech. Compos. Mater., 49, No. 5, 563-570 (2013).CrossRef
30.
go back to reference R. Ganguli, “Optimal design of composite structures: A historical review,” Journal of the Indian Institute of Science, 93, No. 4, 557-570 (2013). R. Ganguli, “Optimal design of composite structures: A historical review,” Journal of the Indian Institute of Science, 93, No. 4, 557-570 (2013).
31.
go back to reference M. Mitchell, An Introduction to Genetic Algorithms, A Bradford Book MIT Press, Cambridge - London (1998).CrossRef M. Mitchell, An Introduction to Genetic Algorithms, A Bradford Book MIT Press, Cambridge - London (1998).CrossRef
32.
go back to reference D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm,” Journal of Global Optimization, 39, No. 3, 459-471 (2007).CrossRef D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm,” Journal of Global Optimization, 39, No. 3, 459-471 (2007).CrossRef
33.
go back to reference D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Applied Mathematics and Computation, 214, No. 1, 108-132 (2009).CrossRef D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Applied Mathematics and Computation, 214, No. 1, 108-132 (2009).CrossRef
34.
go back to reference A. R. M. Rao, “Lay-up sequence design of laminate composite plates and a cylindrical skirt using ant colony optimization,” Journal of Aerospace Engineering. 223, No. 1, 1-18 (2009). A. R. M. Rao, “Lay-up sequence design of laminate composite plates and a cylindrical skirt using ant colony optimization,” Journal of Aerospace Engineering. 223, No. 1, 1-18 (2009).
35.
go back to reference A. Axinte, L. Bejan, N. Taranu, and P. Ciobanu, “Modern approaches on the optimization of composite structures,” The Bulletin of the Polytechnic Institute of Jassy: Construction, Architecture Section, 59, No. 73, 43-54 (2013). A. Axinte, L. Bejan, N. Taranu, and P. Ciobanu, “Modern approaches on the optimization of composite structures,” The Bulletin of the Polytechnic Institute of Jassy: Construction, Architecture Section, 59, No. 73, 43-54 (2013).
36.
go back to reference D. B. Adams, L. T. Watson, Z. Gürdal, and C. M. Anderson-Cook, “Genetic algorithm optimization and blending of composite laminates by locally reducing laminate thickness,” Advances in Engineering Software, 35, No. 1, 35-43 (2004).CrossRef D. B. Adams, L. T. Watson, Z. Gürdal, and C. M. Anderson-Cook, “Genetic algorithm optimization and blending of composite laminates by locally reducing laminate thickness,” Advances in Engineering Software, 35, No. 1, 35-43 (2004).CrossRef
37.
go back to reference D. B. Adams, L. T. Watson, and Z. Gürdal, “Optimization and blending of composite laminates using genetic algorithms with migration,” Mechanics of Advanced Materials and Structures, 10, No. 3, 183-203 (2003).CrossRef D. B. Adams, L. T. Watson, and Z. Gürdal, “Optimization and blending of composite laminates using genetic algorithms with migration,” Mechanics of Advanced Materials and Structures, 10, No. 3, 183-203 (2003).CrossRef
38.
go back to reference B. Liu and R. T. Haftka, “Composite wing structural design optimization with continuity constraints,” In: 19th AIAA Applied Aerodynamics Conference, June 11-14, 2001, Anaheim, CA, USA. B. Liu and R. T. Haftka, “Composite wing structural design optimization with continuity constraints,” In: 19th AIAA Applied Aerodynamics Conference, June 11-14, 2001, Anaheim, CA, USA.
39.
go back to reference Z. Jing, Q. Sun, and V. V. Silberschmidt, “A framework for design and optimization of tapered composite structures. Part I: From individual panel to global blending structure,” Composite Structures, 154, 106-128 (2016).CrossRef Z. Jing, Q. Sun, and V. V. Silberschmidt, “A framework for design and optimization of tapered composite structures. Part I: From individual panel to global blending structure,” Composite Structures, 154, 106-128 (2016).CrossRef
40.
go back to reference V. Symonov, “Multilevel optimization of complex composite structures with a variable stiffness, part II: Description of optimization algorithm,” Mech. Compos. Mater., 59, No. 1, 89-100 (2022). V. Symonov, “Multilevel optimization of complex composite structures with a variable stiffness, part II: Description of optimization algorithm,” Mech. Compos. Mater., 59, No. 1, 89-100 (2022).
Metadata
Title
Multilevel Optimization of Complex Composite Structures with Variable Stiffness, Part I: Description of the Optimization Algorithm
Author
V. S. Symonov
Publication date
14-03-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10081-2

Other articles of this Issue 1/2023

Mechanics of Composite Materials 1/2023 Go to the issue

Premium Partners