Skip to main content
Top
Published in: Journal of Computational Electronics 2/2015

01-06-2015

Multimillion-atom modeling of InAs/GaAs quantum dots: interplay of geometry, quantization, atomicity, strain, and linear and quadratic polarization fields

Authors: Shaikh Ahmed, Sasi Sundaresan, Hoon Ryu, Muhammad Usman

Published in: Journal of Computational Electronics | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electronic structure and optical properties of self-assembled quantum dots strongly depend on an intricate interplay of the quantum mechanical size quantization and the atomistic built-in/internal electrostatic fields in the underlying material system. Specifically, built-in fields in zincblende quantum dots originate mainly from: (1) fundamental crystal atomicity and the interfaces between two dissimilar materials, (2) microscopic distribution of strain, and (3) the piezoelectric polarization. In this paper, we first study the origin and nature of these internal fields in InAs/GaAs quantum dots having three different geometries, namely, box, dome, and pyramid. We then quantify and delineate the impact of these internal fields on the one-particle electronic states in terms of symmetry-lowering and localization in the wavefunctions, shift in the energy states and bandgap, anisotropy and non-degeneracy in the \(P\) level, and formation of mixed excited bound states near the Brillouin zone center. Finally, we study the geometry and size-dependence of interband optical transitions in the XY and XZ planes treating the quantum size quantization and the internal fields as parameters. The computational framework employs a combination of fully atomistic valence force-field molecular mechanics, 20-band nearest-neighbor \(sp^{3} d^{5} s^{*}\) tight-binding electronic bandstructure models, and appropriate post-processing tools to obtain the interband optical transition rates. In particular, to model piezoelectricity, four different polarization models (based on the experimental and ab initio coefficients accounting for both linear and non-linear effects) have been considered in increased order of accuracy. With the non-linear piezoelectricity generally opposing the linear counterpart, the net piezoelectric field is found to be negligible in smaller dots but exhibits non-vanishing effects as the dot height is increased.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Petroff, P.M.: Epitaxial growth and electronic structure of self-assembled quantum dots. In: Michler, P. (ed.) Single Quantum Dots: Fundamentals, Applications, and New Concepts. Springer, Berlin (2003) Petroff, P.M.: Epitaxial growth and electronic structure of self-assembled quantum dots. In: Michler, P. (ed.) Single Quantum Dots: Fundamentals, Applications, and New Concepts. Springer, Berlin (2003)
2.
go back to reference Rastelli, A., Kiravittaya, S., Schmidt, O.G.: Growth and control of optically active quantum dots. In: Michler, P. (ed.) Single Semiconductor Quantum Dots. Springer, Berlin (2009) Rastelli, A., Kiravittaya, S., Schmidt, O.G.: Growth and control of optically active quantum dots. In: Michler, P. (ed.) Single Semiconductor Quantum Dots. Springer, Berlin (2009)
3.
go back to reference Wang, Z.M., Liang, B., Sablon, K.A., Lee, J., Mazur, Y.I., Strom, N.W., Salamo, G.J.: Self-organization of InAs quantum-dot clusters directed by droplet homoepitaxy. Small 3(2), 235–238 (2007)CrossRef Wang, Z.M., Liang, B., Sablon, K.A., Lee, J., Mazur, Y.I., Strom, N.W., Salamo, G.J.: Self-organization of InAs quantum-dot clusters directed by droplet homoepitaxy. Small 3(2), 235–238 (2007)CrossRef
4.
go back to reference Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, Lidong, Hu, E., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)CrossRef Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, Lidong, Hu, E., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)CrossRef
5.
go back to reference Bhowmick, S., Baten, M.Z., Frost, T., Ooi, B.S., Bhattacharya, P.: High performance \(\text{ InAs/In }_{0.53}\text{ Ga }_{0.23}\text{ Al }_{0.24}\text{ As/InP }\) quantum dot 1.55 \(\mu \)m tunnel injection laser. IEEE J. Quantum Electron. 50(1), 7–14 (2014)CrossRef Bhowmick, S., Baten, M.Z., Frost, T., Ooi, B.S., Bhattacharya, P.: High performance \(\text{ InAs/In }_{0.53}\text{ Ga }_{0.23}\text{ Al }_{0.24}\text{ As/InP }\) quantum dot 1.55 \(\mu \)m tunnel injection laser. IEEE J. Quantum Electron. 50(1), 7–14 (2014)CrossRef
6.
go back to reference Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)CrossRef Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)CrossRef
7.
go back to reference Friesen, M., Rugheimer, P., Savage, D., Lagally, M., van der Weide, D., Joynt, R., Eriksson, M.: Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301 (2003)CrossRef Friesen, M., Rugheimer, P., Savage, D., Lagally, M., van der Weide, D., Joynt, R., Eriksson, M.: Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301 (2003)CrossRef
8.
go back to reference Bester, G., Zunger, A.: Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318 (2005)CrossRef Bester, G., Zunger, A.: Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318 (2005)CrossRef
9.
go back to reference Marzin, J.-Y., Gérard, J.-M., Izraël, A., Barrier, D., Bastard, G.: Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (2000)CrossRef Marzin, J.-Y., Gérard, J.-M., Izraël, A., Barrier, D., Bastard, G.: Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (2000)CrossRef
10.
go back to reference Klimeck, G., Ahmed, S., Kharche, N., Bae, H., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: Part I—Models and benchmarks. IEEE Trans. Electron Devices 54(9), 2079–2089 (2007)CrossRef Klimeck, G., Ahmed, S., Kharche, N., Bae, H., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: Part I—Models and benchmarks. IEEE Trans. Electron Devices 54(9), 2079–2089 (2007)CrossRef
11.
go back to reference Klimeck, G., Ahmed, S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: Part II—Applications. IEEE Trans. Electron Devices 54(9), 2090–2099 (2007)CrossRef Klimeck, G., Ahmed, S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: Part II—Applications. IEEE Trans. Electron Devices 54(9), 2090–2099 (2007)CrossRef
12.
go back to reference Pryor, C., Kim, J., Wang, L.W., Williamson, A.J., Zunger, A.: Comparison of two methods for describing the strain profiles in quantum dots. J. Appl. Phys. 83, 2548 (1998)CrossRef Pryor, C., Kim, J., Wang, L.W., Williamson, A.J., Zunger, A.: Comparison of two methods for describing the strain profiles in quantum dots. J. Appl. Phys. 83, 2548 (1998)CrossRef
13.
go back to reference Grundmann, S.M., Bimberg, D.: Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys. Rev. B 59, 5688–5701 (1999)CrossRef Grundmann, S.M., Bimberg, D.: Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys. Rev. B 59, 5688–5701 (1999)CrossRef
14.
go back to reference Williamson, J., Wang, L.W., Zunger, Alex: Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys. Rev. B 62, 12963–12977 (2000)CrossRef Williamson, J., Wang, L.W., Zunger, Alex: Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys. Rev. B 62, 12963–12977 (2000)CrossRef
15.
go back to reference Grundmann, M., Stier, O., Bimberg, D.: InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995)CrossRef Grundmann, M., Stier, O., Bimberg, D.: InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995)CrossRef
16.
go back to reference Hossain, M.Z., Medhekar, N.V., Shenoy, V.B., Johnson, H.T.: Enhanced quantum confinement due to nonuniform composition in alloy quantum dots. Nanotechnology 21, 095401 (2010)CrossRef Hossain, M.Z., Medhekar, N.V., Shenoy, V.B., Johnson, H.T.: Enhanced quantum confinement due to nonuniform composition in alloy quantum dots. Nanotechnology 21, 095401 (2010)CrossRef
17.
go back to reference Vastola, G., Zhang, Y.-W., Shenoy, V.B.: Experiments and modeling of alloying in self-assembled quantum dots. Curr. Opin. Solid State Mater. Sci. 16(2), 64–70 (2012)CrossRef Vastola, G., Zhang, Y.-W., Shenoy, V.B.: Experiments and modeling of alloying in self-assembled quantum dots. Curr. Opin. Solid State Mater. Sci. 16(2), 64–70 (2012)CrossRef
18.
go back to reference Jancu, J.M., Scholz, R., Beltram, F., Bassani, F.: Empirical \(spds^{\ast }\) tight-binding calculation for cubic semiconductors: general method and material parameters. Phys. Rev. B 57, 6493 (1998)CrossRef Jancu, J.M., Scholz, R., Beltram, F., Bassani, F.: Empirical \(spds^{\ast }\) tight-binding calculation for cubic semiconductors: general method and material parameters. Phys. Rev. B 57, 6493 (1998)CrossRef
19.
go back to reference Ahmed, S., Kharche, N., Rahman, R., Usman, M., Lee, S., Ryu, H., Bae, H., Clark, S., Haley, B., Naumov, M., Saied, F., Korkusinski, M., Kennel, R., Mclennan, M., Boykin, T.B., Klimeck, G.: Multimillion atom simulations with NEMO 3-D. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5745–5783. Springer, New York (2009)CrossRef Ahmed, S., Kharche, N., Rahman, R., Usman, M., Lee, S., Ryu, H., Bae, H., Clark, S., Haley, B., Naumov, M., Saied, F., Korkusinski, M., Kennel, R., Mclennan, M., Boykin, T.B., Klimeck, G.: Multimillion atom simulations with NEMO 3-D. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5745–5783. Springer, New York (2009)CrossRef
20.
go back to reference Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F.: Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory. Phys. Rev. B 66, 125207 (2002)CrossRef Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F.: Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory. Phys. Rev. B 66, 125207 (2002)CrossRef
21.
go back to reference Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, R.C., von Allmen, P.: Development of a nanoelectronic 3-D (NEMO 3-D) simulator for multimillion atom simulations and its application to alloyed quantum dots. J. Comput. Model. Eng. Sci. 3, 601–642 (2002)MATH Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, R.C., von Allmen, P.: Development of a nanoelectronic 3-D (NEMO 3-D) simulator for multimillion atom simulations and its application to alloyed quantum dots. J. Comput. Model. Eng. Sci. 3, 601–642 (2002)MATH
22.
go back to reference Lazarenkova, O.L., Allmen, P., Oyafuso, F., Lee, S., Klimeck, G.: Effect of anharmonicity of the strain energy on band offsets in semiconductor nanostructures. Appl. Phys. Lett. 85, 4193–4195 (2004)CrossRef Lazarenkova, O.L., Allmen, P., Oyafuso, F., Lee, S., Klimeck, G.: Effect of anharmonicity of the strain energy on band offsets in semiconductor nanostructures. Appl. Phys. Lett. 85, 4193–4195 (2004)CrossRef
23.
go back to reference Graf, M., Vogl, P.: Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B 51, 4940–4949 (1995)CrossRef Graf, M., Vogl, P.: Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B 51, 4940–4949 (1995)CrossRef
24.
go back to reference Boykin, T.B., Bowen, R.C., Klimeck, G.: Electromagnetic coupling and gauge invariance in the empirical tight-binding method. Phys. Rev. B 63, 245314 (2001)CrossRef Boykin, T.B., Bowen, R.C., Klimeck, G.: Electromagnetic coupling and gauge invariance in the empirical tight-binding method. Phys. Rev. B 63, 245314 (2001)CrossRef
25.
go back to reference Boykin, T.B., Vogl, P.: Dielectric response of molecules in empirical tight-binding theory. Phys. Rev. B 65, 035202 (2001)CrossRef Boykin, T.B., Vogl, P.: Dielectric response of molecules in empirical tight-binding theory. Phys. Rev. B 65, 035202 (2001)CrossRef
26.
go back to reference Haley, B.P., Lee, S., Luisier, M., Ryu, H., Saied, F., Clark, S., Bae, H., Klimeck, G.: Advancing nanoelectronic device modeling through peta-scale computing and deployment on nanoHUB. J. Phys. 180, 012075 (2009) Haley, B.P., Lee, S., Luisier, M., Ryu, H., Saied, F., Clark, S., Bae, H., Klimeck, G.: Advancing nanoelectronic device modeling through peta-scale computing and deployment on nanoHUB. J. Phys. 180, 012075 (2009)
27.
go back to reference Bester, G., Wu, X., Vanderbilt, D., Zunger, A.: Importance of second-order piezoelectric effects in zincblende semiconductors. Phys. Rev. Lett. 96, 187602 (2006)CrossRef Bester, G., Wu, X., Vanderbilt, D., Zunger, A.: Importance of second-order piezoelectric effects in zincblende semiconductors. Phys. Rev. Lett. 96, 187602 (2006)CrossRef
28.
go back to reference Bester, G., Zunger, A., Wu, X., Vanderbilt, D.: Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots. Phys. Rev. B 74, 081305 (2006)CrossRef Bester, G., Zunger, A., Wu, X., Vanderbilt, D.: Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots. Phys. Rev. B 74, 081305 (2006)CrossRef
29.
go back to reference Ahmed, S., Islam, S., Mohammed, S.: Electronic structure of InN/GaN quantum dots: multimillion atom tight-binding simulations. IEEE Trans. Electron Devices 57(1), 164–173 (2010)CrossRef Ahmed, S., Islam, S., Mohammed, S.: Electronic structure of InN/GaN quantum dots: multimillion atom tight-binding simulations. IEEE Trans. Electron Devices 57(1), 164–173 (2010)CrossRef
30.
go back to reference Yalavarthi, K., Chimalgi, V., Ahmed, S.: How important is nonlinear piezoelectricity in wurtzite GaN/InN/GaN disk-in-nanowire LED structures? Opt. Quantum Electron. 46, 925–933 (2014)CrossRef Yalavarthi, K., Chimalgi, V., Ahmed, S.: How important is nonlinear piezoelectricity in wurtzite GaN/InN/GaN disk-in-nanowire LED structures? Opt. Quantum Electron. 46, 925–933 (2014)CrossRef
31.
go back to reference Sundaresan, S.S., Gaddipati, V.M., Ahmed, S.S.: Effects of spontaneous and piezoelectric polarization fields on the electronic and optical properties in GaN/AlN quantum dots: multimillion-atom \(sp^{3} d^{5} s^{\ast }\) tight-binding simulations. Int. J. Numer. Model. 2, (2014). doi:10.1002/jnm.2008 Sundaresan, S.S., Gaddipati, V.M., Ahmed, S.S.: Effects of spontaneous and piezoelectric polarization fields on the electronic and optical properties in GaN/AlN quantum dots: multimillion-atom \(sp^{3} d^{5} s^{\ast }\) tight-binding simulations. Int. J. Numer. Model. 2, (2014). doi:10.​1002/​jnm.​2008
32.
go back to reference Merill, K., Yalavarthi, K., Ahmed, S.: Giant growth-plane optical anisotropy in c-plane wurtzite GaN/InN/GaN dot-in-nanowires. Superlattices Microstruct. 52(5), 949–961 (2012)CrossRef Merill, K., Yalavarthi, K., Ahmed, S.: Giant growth-plane optical anisotropy in c-plane wurtzite GaN/InN/GaN dot-in-nanowires. Superlattices Microstruct. 52(5), 949–961 (2012)CrossRef
33.
go back to reference Sundaresan, S., Islam, S., Ahmed, S.: Built-in electric fields in InAs/GaAs quantum dots: geometry dependence and effects on the electronic structure. In: Technical proceedings of IEEE nanotechnology materials and devices conferences (NMDC), California, USA, pp. 30–35 12–15 Oct 2010 Sundaresan, S., Islam, S., Ahmed, S.: Built-in electric fields in InAs/GaAs quantum dots: geometry dependence and effects on the electronic structure. In: Technical proceedings of IEEE nanotechnology materials and devices conferences (NMDC), California, USA, pp. 30–35 12–15 Oct 2010
34.
go back to reference Ahmed, S., Yalavarthi, K., Gaddipati, V., Muntahi, A., Sundaresan, S., Mohammed, S., Islam, S., Hindupur, R., John, D., Ogden, J.: Quantum atomistic simulations of nanoelectronic devices using QuADS. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-electronic Devices: Semiclassical and Quantum Transport Modeling, pp. 405–441. Springer, New York (2011)CrossRef Ahmed, S., Yalavarthi, K., Gaddipati, V., Muntahi, A., Sundaresan, S., Mohammed, S., Islam, S., Hindupur, R., John, D., Ogden, J.: Quantum atomistic simulations of nanoelectronic devices using QuADS. In: Vasileska, D., Goodnick, S.M. (eds.) Nano-electronic Devices: Semiclassical and Quantum Transport Modeling, pp. 405–441. Springer, New York (2011)CrossRef
35.
go back to reference Ahmed, S., Usman, M., Heitzinger, C., Rahman, R., Schliwa, A., Klimeck, G.: Atomistic simulation of non-degeneracy and optical polarization anisotropy in zincblende quantum dots. In: Technical proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems, Bangkok, pp. 937–942, 16–19 Jan 2007 Ahmed, S., Usman, M., Heitzinger, C., Rahman, R., Schliwa, A., Klimeck, G.: Atomistic simulation of non-degeneracy and optical polarization anisotropy in zincblende quantum dots. In: Technical proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems, Bangkok, pp. 937–942, 16–19 Jan 2007
36.
go back to reference Usman, M., Tan, Y.-H.M., Ryu, H., Ahmed, S.S., Krenner, H.J., Boykin, T.B., Klimeck, G.: Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million atom electronic structure calculations. Nanotechnology 22, 315709 (2011)CrossRef Usman, M., Tan, Y.-H.M., Ryu, H., Ahmed, S.S., Krenner, H.J., Boykin, T.B., Klimeck, G.: Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million atom electronic structure calculations. Nanotechnology 22, 315709 (2011)CrossRef
37.
go back to reference Andreev, D., O’Reilly, E.P.: Optical matrix element in InAs/GaAs quantum dots: dependence on quantum dot parameters. Appl. Phys. Lett. 87, 213106 (2005)CrossRef Andreev, D., O’Reilly, E.P.: Optical matrix element in InAs/GaAs quantum dots: dependence on quantum dot parameters. Appl. Phys. Lett. 87, 213106 (2005)CrossRef
38.
go back to reference Ryu, H., Nam, D., Ahn, B.-Y., Lee, J.R., Cho, K., Lee, S., Klimeck, G., Shin, M.: Optical TCAD on the net: a tight-binding study of inter-band light transitions in self-assembled InAs/GaAs quantum dot photodetectors. Math. Comput. Model. 58, 288–299 (2013)CrossRef Ryu, H., Nam, D., Ahn, B.-Y., Lee, J.R., Cho, K., Lee, S., Klimeck, G., Shin, M.: Optical TCAD on the net: a tight-binding study of inter-band light transitions in self-assembled InAs/GaAs quantum dot photodetectors. Math. Comput. Model. 58, 288–299 (2013)CrossRef
Metadata
Title
Multimillion-atom modeling of InAs/GaAs quantum dots: interplay of geometry, quantization, atomicity, strain, and linear and quadratic polarization fields
Authors
Shaikh Ahmed
Sasi Sundaresan
Hoon Ryu
Muhammad Usman
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2015
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0682-4

Other articles of this Issue 2/2015

Journal of Computational Electronics 2/2015 Go to the issue