Skip to main content
Top
Published in:

01-12-2023 | Original Article

Multimodal fake news detection on social media: a survey of deep learning techniques

Authors: Carmela Comito, Luciano Caroprese, Ester Zumpano

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The escalation of false information related to the massive use of social media has become a challenging problem, and significant is the effort of the research community in providing effective solutions to detecting it. Fake news are spreading for decades, but with the rise of social media, the nature of misinformation has evolved from text-based modality to visual modalities, such as images, audio, and video. Therefore, the identification of media-rich fake news requires an approach that exploits and effectively combines the information acquired from different multimodal categories. Multimodality is a key approach to improving fake news detection, but effective solutions supporting it are still poorly explored. More specifically, many different works exist that investigate if a text, an image, or a video is fake or not, but effective research on a real multimodal setting, ‘fusing’ the different modalities with their different structure and dimension is still an open problem. The paper is a focused survey concerning a very specific topic which is the use of deep learning (DL) methods for multimodal fake news detection on social media. The survey provides, for each work surveyed, a description of some relevant features such as the DL method used, the type of analysed data, and the fusion strategy adopted. The paper also highlights the main limitations of the current state of the art and draws some future directions to address open questions and challenges, including explainability and effective cross-domain fake news detection strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdali S (2022) Multi-modal misinformation detection: approaches, challenges and opportunities Abdali S (2022) Multi-modal misinformation detection: approaches, challenges and opportunities
go back to reference Alam F, Cresci S, Chakraborty T, Silvestri F, Dimitrov D, Martino GDS, Shaar S, Firooz H, Nakov P (2022) A survey on multimodal disinformation detection. In: Proceedings of the 29th international conference on computational linguistics. International Committee on Computational Linguistics, Gyeongju, Republic of Korea, pp 6625–6643 Alam F, Cresci S, Chakraborty T, Silvestri F, Dimitrov D, Martino GDS, Shaar S, Firooz H, Nakov P (2022) A survey on multimodal disinformation detection. In: Proceedings of the 29th international conference on computational linguistics. International Committee on Computational Linguistics, Gyeongju, Republic of Korea, pp 6625–6643
go back to reference Benamira A, Devillers B, Lesot E, Ray AK, Saadi M, Malliaros FD (2020) Semi-supervised learning and graph neural networks for fake news detection. In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining. ASONAM’19, pp 568–569 Benamira A, Devillers B, Lesot E, Ray AK, Saadi M, Malliaros FD (2020) Semi-supervised learning and graph neural networks for fake news detection. In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining. ASONAM’19, pp 568–569
go back to reference Cui L, Lee D (2020) CoAID: COVID-19 healthcare misinformation dataset Cui L, Lee D (2020) CoAID: COVID-19 healthcare misinformation dataset
go back to reference da Silva FCD, Vieira R, Garcia ACB (2019) Can machines learn to detect fake news? A survey focused on social media. In: HICSS da Silva FCD, Vieira R, Garcia ACB (2019) Can machines learn to detect fake news? A survey focused on social media. In: HICSS
go back to reference Dolhansky B, Howes R, Pflaum B, Baram N, Ferrer CC (2019) The DeepFake detection challenge (DFDC) preview dataset Dolhansky B, Howes R, Pflaum B, Baram N, Ferrer CC (2019) The DeepFake detection challenge (DFDC) preview dataset
go back to reference Dong M, Yao L, Wang X, Benatallah B, Sheng QZ, Huang H (2018) Dual: A deep unified attention model with latent relation representations for fake news detection. In: Hacid H, Cellary W, Wang H, Paik H-Y, Zhou R (eds) WISE, pp 199–209 Dong M, Yao L, Wang X, Benatallah B, Sheng QZ, Huang H (2018) Dual: A deep unified attention model with latent relation representations for fake news detection. In: Hacid H, Cellary W, Wang H, Paik H-Y, Zhou R (eds) WISE, pp 199–209
go back to reference Dou Y, Shu K, Xia C, Yu PS, Sun L (2021) User preference-aware fake news detection. arXiv Dou Y, Shu K, Xia C, Yu PS, Sun L (2021) User preference-aware fake news detection. arXiv
go back to reference Eyben F, Weninger F, Groß F, Schuller B (2013) Recent developments in openSMILE, the munich open-source multimedia feature extractor. In: Proceedings of the 21st ACM international conference on multimedia Eyben F, Weninger F, Groß F, Schuller B (2013) Recent developments in openSMILE, the munich open-source multimedia feature extractor. In: Proceedings of the 21st ACM international conference on multimedia
go back to reference Hangloo S, Arora B (2022) Combating multimodal fake news on social media: methods, datasets, and future perspective. Multimedia Syst 28:2391–2422CrossRef Hangloo S, Arora B (2022) Combating multimodal fake news on social media: methods, datasets, and future perspective. Multimedia Syst 28:2391–2422CrossRef
go back to reference Jiang S, Chen X, Zhang L, Chen S, Liu H (2019) User-characteristic enhanced model for fake news detection in social media. In: Tang J, Kan M, Zhao D, Li S, Zan H (eds) Natural language processing and Chinese computing—8th CCF international conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019, Proceedings, Part I. Lecture notes in computer science, vol 11838. Springer, Berlin, pp 634–646 Jiang S, Chen X, Zhang L, Chen S, Liu H (2019) User-characteristic enhanced model for fake news detection in social media. In: Tang J, Kan M, Zhao D, Li S, Zan H (eds) Natural language processing and Chinese computing—8th CCF international conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019, Proceedings, Part I. Lecture notes in computer science, vol 11838. Springer, Berlin, pp 634–646
go back to reference Jin Z, Cao J, Guo H, Zhang Y, Luo J (2017) Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In: Proceedings of the 25th ACM international conference on multimedia. MM’17. Association for Computing Machinery, New York, pp 795–816 Jin Z, Cao J, Guo H, Zhang Y, Luo J (2017) Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In: Proceedings of the 25th ACM international conference on multimedia. MM’17. Association for Computing Machinery, New York, pp 795–816
go back to reference Jing Q, Yao D, Fan X, Wang B, Tan H, Bu X, Bi J (2021) TRANSFAKE: Multi-task transformer for multimodal enhanced fake news detection. In: IJCNN, pp 1–8 Jing Q, Yao D, Fan X, Wang B, Tan H, Bu X, Bi J (2021) TRANSFAKE: Multi-task transformer for multimodal enhanced fake news detection. In: IJCNN, pp 1–8
go back to reference Khattar D, Goud JS, Gupta M, Varma V (2019) Mvae: Multimodal variational autoencoder for fake news detection. In: The world wide web conference. WWW’19, pp 2915–2921 Khattar D, Goud JS, Gupta M, Varma V (2019) Mvae: Multimodal variational autoencoder for fake news detection. In: The world wide web conference. WWW’19, pp 2915–2921
go back to reference Korshunov P, Marcel S (2018) DeepFakes: a new threat to face recognition? Assessment and detection Korshunov P, Marcel S (2018) DeepFakes: a new threat to face recognition? Assessment and detection
go back to reference Kumari R, Ekbal A (2021) AMFB: Attention based multimodal factorized bilinear pooling for multimodal fake news detection. Expert Syst Appl 184:115412CrossRef Kumari R, Ekbal A (2021) AMFB: Attention based multimodal factorized bilinear pooling for multimodal fake news detection. Expert Syst Appl 184:115412CrossRef
go back to reference Lu Y-J, Li C-T (2020) GCAN: Graph-aware co-attention networks for explainable fake news detection on social media. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 505–514 Lu Y-J, Li C-T (2020) GCAN: Graph-aware co-attention networks for explainable fake news detection on social media. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 505–514
go back to reference Ma J, Gao W, Mitra P, Kwon S, Jansen BJ, Wong K-F, Cha M (2016) Detecting rumors from microblogs with recurrent neural networks. In: IJCAI’16, pp 3818–3824 Ma J, Gao W, Mitra P, Kwon S, Jansen BJ, Wong K-F, Cha M (2016) Detecting rumors from microblogs with recurrent neural networks. In: IJCAI’16, pp 3818–3824
go back to reference McCrae S, Wang K, Zakhor A (2022) Multi-modal semantic inconsistency detection in social media news posts. In: Multimedia modeling. Springer, Berlin, pp 331–343 McCrae S, Wang K, Zakhor A (2022) Multi-modal semantic inconsistency detection in social media news posts. In: Multimedia modeling. Springer, Berlin, pp 331–343
go back to reference Mendels G, Levitan SI, Lee K-Z, Hirschberg J (2017) Hybrid acoustic-lexical deep learning approach for deception detection. In: INTERSPEECH Mendels G, Levitan SI, Lee K-Z, Hirschberg J (2017) Hybrid acoustic-lexical deep learning approach for deception detection. In: INTERSPEECH
go back to reference Mittal T, Bhattacharya U, Chandra R, Bera A, Manocha D (2020) Emotions Don’t Lie: an audio-visual deepfake detection method using affective cues Mittal T, Bhattacharya U, Chandra R, Bera A, Manocha D (2020) Emotions Don’t Lie: an audio-visual deepfake detection method using affective cues
go back to reference Mu M, Bhattacharjee SD, Yuan J (2023) Self-supervised distilled learning for multi-modal misinformation identification. In: IEEE/CVF Winter conference on applications of computer vision, WACV 2023, Waikoloa, HI, USA, January 2–7, 2023. IEEE, pp 2818–2827 Mu M, Bhattacharjee SD, Yuan J (2023) Self-supervised distilled learning for multi-modal misinformation identification. In: IEEE/CVF Winter conference on applications of computer vision, WACV 2023, Waikoloa, HI, USA, January 2–7, 2023. IEEE, pp 2818–2827
go back to reference Murayama T (2021) Dataset of fake news detection and fact verification: a survey Murayama T (2021) Dataset of fake news detection and fact verification: a survey
go back to reference Pérez-Rosas V, Abouelenien M, Mihalcea R, Burzo M (2015) Deception detection using real-life trial data. In: 2015 ACM on international conference on multimodal interaction, pp 59–66 Pérez-Rosas V, Abouelenien M, Mihalcea R, Burzo M (2015) Deception detection using real-life trial data. In: 2015 ACM on international conference on multimodal interaction, pp 59–66
go back to reference Qian F, Gong C, Sharma K, Liu Y (2018) Neural user response generator: fake news detection with collective user intelligence. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI-18, pp 3834–3840 Qian F, Gong C, Sharma K, Liu Y (2018) Neural user response generator: fake news detection with collective user intelligence. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI-18, pp 3834–3840
go back to reference Qi P, Cao J, Li X, Liu H, Sheng Q, Mi X, He Q, Lv Y, Guo C, Yu Y (2021) Improving fake news detection by using an entity-enhanced framework to fuse diverse multimodal clues, pp 1212–1220 Qi P, Cao J, Li X, Liu H, Sheng Q, Mi X, He Q, Lv Y, Guo C, Yu Y (2021) Improving fake news detection by using an entity-enhanced framework to fuse diverse multimodal clues, pp 1212–1220
go back to reference Sachan T, Pinnaparaju N, Gupta M, Varma V (2021) SCATE: Shared cross attention transformer encoders for multimodal fake news detection. In: Proceedings of the 2021 IEEE/ACM international conference on advances in social networks analysis and mining. ASONAM’21, pp 399–406 Sachan T, Pinnaparaju N, Gupta M, Varma V (2021) SCATE: Shared cross attention transformer encoders for multimodal fake news detection. In: Proceedings of the 2021 IEEE/ACM international conference on advances in social networks analysis and mining. ASONAM’21, pp 399–406
go back to reference Shang L, Kou Z, Zhang Y, Wang D (2022) A duo-generative approach to explainable multimodal COVID-19 misinformation detection. In: Proceedings of the ACM web conference 2022. WWW’22, pp 3623–3631 Shang L, Kou Z, Zhang Y, Wang D (2022) A duo-generative approach to explainable multimodal COVID-19 misinformation detection. In: Proceedings of the ACM web conference 2022. WWW’22, pp 3623–3631
go back to reference Shu K, Sliva A, Wang S, Tang J, Liu H (2017) Fake news detection on social media: a data mining perspective. SIGKDD Explor Newsl 19(1):22–36CrossRef Shu K, Sliva A, Wang S, Tang J, Liu H (2017) Fake news detection on social media: a data mining perspective. SIGKDD Explor Newsl 19(1):22–36CrossRef
go back to reference Shu K, Cui L, Wang S, Lee D, Liu H (2019a) dEFEND: Explainable fake news detection. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining. KDD’19, pp 395–405 Shu K, Cui L, Wang S, Lee D, Liu H (2019a) dEFEND: Explainable fake news detection. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining. KDD’19, pp 395–405
go back to reference Shu K, Mahudeswaran D, Wang S, Lee D, Liu H (2019b) FakeNewsNet: a data repository with news content, social context and spatial temporal information for studying fake news on social media Shu K, Mahudeswaran D, Wang S, Lee D, Liu H (2019b) FakeNewsNet: a data repository with news content, social context and spatial temporal information for studying fake news on social media
go back to reference Shu K, Mahudeswaran D, Wang S, Liu H (2020) Hierarchical propagation networks for fake news detection: Investigation and exploitation. In: Proceedings of the international AAAI conference on web and social media, vol 14, issue 1, pp 626–637 Shu K, Mahudeswaran D, Wang S, Liu H (2020) Hierarchical propagation networks for fake news detection: Investigation and exploitation. In: Proceedings of the international AAAI conference on web and social media, vol 14, issue 1, pp 626–637
go back to reference Shu K, Wang S, Liu H (2019) Beyond news contents: The role of social context for fake news detection. In: Proceedings of the twelfth ACM international conference on web search and data mining. WSDM’19, pp 312–320 Shu K, Wang S, Liu H (2019) Beyond news contents: The role of social context for fake news detection. In: Proceedings of the twelfth ACM international conference on web search and data mining. WSDM’19, pp 312–320
go back to reference Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition
go back to reference Singhal S, Dhawan M, Shah RR, Kumaraguru P (2021) Inter-modality discordance for multimodal fake news detection. In: MMAsia Singhal S, Dhawan M, Shah RR, Kumaraguru P (2021) Inter-modality discordance for multimodal fake news detection. In: MMAsia
go back to reference Song C, Ning N, Zhang Y, Wu B (2021) A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks. Inf Process Manag 58(1):102437CrossRef Song C, Ning N, Zhang Y, Wu B (2021) A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks. Inf Process Manag 58(1):102437CrossRef
go back to reference Volkova S, Shaffer K, Jang JY, Hodas N (2017) Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on Twitter. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 2: short papers), pp 647–653 Volkova S, Shaffer K, Jang JY, Hodas N (2017) Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on Twitter. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 2: short papers), pp 647–653
go back to reference Wang Y, Ma F, Jin Z, Yuan Y, Xun G, Jha K, Su L, Gao J (2018) Eann: Event adversarial neural networks for multi-modal fake news detection. In: KDD, pp 849–857 Wang Y, Ma F, Jin Z, Yuan Y, Xun G, Jha K, Su L, Gao J (2018) Eann: Event adversarial neural networks for multi-modal fake news detection. In: KDD, pp 849–857
go back to reference Wang Y, Ma F, Wang H, Jha K, Gao J (2021) Multimodal emergent fake news detection via meta neural process networks. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. KDD’21, pp 3708–3716 Wang Y, Ma F, Wang H, Jha K, Gao J (2021) Multimodal emergent fake news detection via meta neural process networks. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. KDD’21, pp 3708–3716
go back to reference Wang K, Chan D, Zhao SZ, Canny J, Zakhor A (2022) Misinformation detection in social media video posts Wang K, Chan D, Zhao SZ, Canny J, Zakhor A (2022) Misinformation detection in social media video posts
go back to reference Wu L, Rao Y (2020) Adaptive interaction fusion networks for fake news detection. In: 24th European conference on artificial intelligence—ECAI 2020 Wu L, Rao Y (2020) Adaptive interaction fusion networks for fake news detection. In: 24th European conference on artificial intelligence—ECAI 2020
go back to reference Xue J, Wang Y, Tian Y, Li Y, Shi L, Wei L (2021) Detecting fake news by exploring the consistency of multimodal data. Inf Process Manag 58(5):102610CrossRef Xue J, Wang Y, Tian Y, Li Y, Shi L, Wei L (2021) Detecting fake news by exploring the consistency of multimodal data. Inf Process Manag 58(5):102610CrossRef
go back to reference Yang Y, Zheng L, Zhang J, Cui Q, Li Z, Yu PS (2018) TI-CNN: convolutional neural networks for fake news detection. arXiv Yang Y, Zheng L, Zhang J, Cui Q, Li Z, Yu PS (2018) TI-CNN: convolutional neural networks for fake news detection. arXiv
go back to reference Yang S, Shu K, Wang S, Gu R, Wu F, Liu H (2019) Unsupervised fake news detection on social media: a generative approach. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, issue 01, pp 5644–5651 Yang S, Shu K, Wang S, Gu R, Wu F, Liu H (2019) Unsupervised fake news detection on social media: a generative approach. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, issue 01, pp 5644–5651
go back to reference Zhang H, Fang Q, Qian S, Xu C (2019) Multi-modal knowledge-aware event memory network for social media rumor detection. In: Proceedings of the 27th ACM international conference on multimedia. MM’19, pp 1942–1951 Zhang H, Fang Q, Qian S, Xu C (2019) Multi-modal knowledge-aware event memory network for social media rumor detection. In: Proceedings of the 27th ACM international conference on multimedia. MM’19, pp 1942–1951
Metadata
Title
Multimodal fake news detection on social media: a survey of deep learning techniques
Authors
Carmela Comito
Luciano Caroprese
Ester Zumpano
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01104-w

Premium Partner