Skip to main content
Top

2018 | OriginalPaper | Chapter

Multimodal Unsupervised Image-to-Image Translation

Authors : Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz

Published in: Computer Vision – ECCV 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Unsupervised image-to-image translation is an important and challenging problem in computer vision. Given an image in the source domain, the goal is to learn the conditional distribution of corresponding images in the target domain, without seeing any examples of corresponding image pairs. While this conditional distribution is inherently multimodal, existing approaches make an overly simplified assumption, modeling it as a deterministic one-to-one mapping. As a result, they fail to generate diverse outputs from a given source domain image. To address this limitation, we propose a Multimodal Unsupervised Image-to-image \(\text{ Translation } \text{(MUNIT) }\) framework. We assume that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties. To translate an image to another domain, we recombine its content code with a random style code sampled from the style space of the target domain. We analyze the proposed framework and establish several theoretical results. Extensive experiments with comparisons to state-of-the-art approaches further demonstrate the advantage of the proposed framework. Moreover, our framework allows users to control the style of translation outputs by providing an example style image. Code and pretrained models are available at https://​github.​com/​nvlabs/​MUNIT.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016) Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)
4.
go back to reference Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays, J.: Transient attributes for high-level understanding and editing of outdoor scenes. TOG 34, 149 (2014) Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays, J.: Transient attributes for high-level understanding and editing of outdoor scenes. TOG 34, 149 (2014)
5.
go back to reference Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016) Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)
6.
go back to reference Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017) Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
7.
go back to reference Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: ICCV (2017) Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: ICCV (2017)
8.
go back to reference Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017) Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)
9.
go back to reference Kim, T., Cha, M., Kim, H., Lee, J., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017) Kim, T., Cha, M., Kim, H., Lee, J., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017)
10.
go back to reference Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017) Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017)
11.
go back to reference Zhu, J.Y., Zhang, R., Pathak, D., Darrell, T., Efros, A.A., Wang, O., Shechtman, E.: Toward multimodal image-to-image translation. In: NIPS (2017) Zhu, J.Y., Zhang, R., Pathak, D., Darrell, T., Efros, A.A., Wang, O., Shechtman, E.: Toward multimodal image-to-image translation. In: NIPS (2017)
12.
go back to reference Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016) Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)
13.
go back to reference Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: ICCV (2017) Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: ICCV (2017)
14.
15.
go back to reference Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017) Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017)
16.
go back to reference Benaim, S., Wolf, L.: One-sided unsupervised domain mapping. In: NIPS (2017) Benaim, S., Wolf, L.: One-sided unsupervised domain mapping. In: NIPS (2017)
17.
18.
go back to reference Gan, Z., et al.: Triangle generative adversarial networks. In: NIPS, pp. 5253–5262 (2017) Gan, Z., et al.: Triangle generative adversarial networks. In: NIPS, pp. 5253–5262 (2017)
19.
go back to reference Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018) Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)
20.
go back to reference Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018) Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)
21.
go back to reference Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: CVPR (2017) Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: CVPR (2017)
22.
go back to reference Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR (2017) Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR (2017)
23.
go back to reference Wolf, L., Taigman, Y., Polyak, A.: Unsupervised creation of parameterized avatars. In: ICCV (2017) Wolf, L., Taigman, Y., Polyak, A.: Unsupervised creation of parameterized avatars. In: ICCV (2017)
24.
go back to reference Tau, T.G., Wolf, L., Tau, S.B.: The role of minimal complexity functions in unsupervised learning of semantic mappings. In: ICLR (2018) Tau, T.G., Wolf, L., Tau, S.B.: The role of minimal complexity functions in unsupervised learning of semantic mappings. In: ICLR (2018)
25.
go back to reference Hoshen, Y., Wolf, L.: Identifying analogies across domains. In: ICLR (2018) Hoshen, Y., Wolf, L.: Identifying analogies across domains. In: ICLR (2018)
26.
go back to reference Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016) Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)
27.
go back to reference Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014) Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
28.
go back to reference Denton, E.L., Chintala, S., Fergus, R.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS (2015) Denton, E.L., Chintala, S., Fergus, R.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS (2015)
30.
go back to reference Yang, J., Kannan, A., Batra, D., Parikh, D.: LR-GAN: layered recursive generative adversarial networks for image generation. In: ICLR (2017) Yang, J., Kannan, A., Batra, D., Parikh, D.: LR-GAN: layered recursive generative adversarial networks for image generation. In: ICLR (2017)
31.
go back to reference Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., Belongie, S.: Stacked generative adversarial networks. In: CVPR (2017) Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., Belongie, S.: Stacked generative adversarial networks. In: CVPR (2017)
32.
go back to reference Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017) Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)
33.
go back to reference Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018) Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)
34.
go back to reference Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS (2016) Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS (2016)
35.
go back to reference Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. In: ICLR (2017) Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. In: ICLR (2017)
36.
go back to reference Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML (2017) Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML (2017)
37.
go back to reference Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017) Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks. arXiv preprint arXiv:​1703.​10717 (2017)
38.
go back to reference Mao, X., Li, Q., Xie, H., Lau, Y.R., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: ICCV (2017) Mao, X., Li, Q., Xie, H., Lau, Y.R., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: ICCV (2017)
39.
go back to reference Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. In: ICLR (2018) Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. In: ICLR (2018)
40.
go back to reference Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: ICML (2016) Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: ICML (2016)
41.
go back to reference Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NIPS (2016) Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NIPS (2016)
42.
go back to reference Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational approaches for auto-encoding generative adversarial networks. arXiv preprint arXiv:1706.04987 (2017) Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational approaches for auto-encoding generative adversarial networks. arXiv preprint arXiv:​1706.​04987 (2017)
43.
go back to reference Li, C., et al.: Alice: towards understanding adversarial learning for joint distribution matching. In: NIPS (2017) Li, C., et al.: Alice: towards understanding adversarial learning for joint distribution matching. In: NIPS (2017)
44.
go back to reference Srivastava, A., Valkoz, L., Russell, C., Gutmann, M.U., Sutton, C.: VEEGAN: reducing mode collapse in gans using implicit variational learning. In: NIPS (2017) Srivastava, A., Valkoz, L., Russell, C., Gutmann, M.U., Sutton, C.: VEEGAN: reducing mode collapse in gans using implicit variational learning. In: NIPS (2017)
45.
go back to reference Ghosh, A., Kulharia, V., Namboodiri, V., Torr, P.H., Dokania, P.K.: Multi-agent diverse generative adversarial networks. arXiv preprint arXiv:1704.02906 (2017) Ghosh, A., Kulharia, V., Namboodiri, V., Torr, P.H., Dokania, P.K.: Multi-agent diverse generative adversarial networks. arXiv preprint arXiv:​1704.​02906 (2017)
46.
go back to reference Bansal, A., Sheikh, Y., Ramanan, D.: PixeLNN: example-based image synthesis. In: ICLR (2018) Bansal, A., Sheikh, Y., Ramanan, D.: PixeLNN: example-based image synthesis. In: ICLR (2018)
47.
go back to reference Almahairi, A., Rajeswar, S., Sordoni, A., Bachman, P., Courville, A.: Augmented cycleGAN: learning many-to-many mappings from unpaired data. arXiv preprint arXiv:1802.10151 (2018) Almahairi, A., Rajeswar, S., Sordoni, A., Bachman, P., Courville, A.: Augmented cycleGAN: learning many-to-many mappings from unpaired data. arXiv preprint arXiv:​1802.​10151 (2018)
49.
go back to reference Anoosheh, A., Agustsson, E., Timofte, R., Van Gool, L.: ComboGAN: unrestrained scalability for image domain translation. arXiv preprint arXiv:1712.06909 (2017) Anoosheh, A., Agustsson, E., Timofte, R., Van Gool, L.: ComboGAN: unrestrained scalability for image domain translation. arXiv preprint arXiv:​1712.​06909 (2017)
50.
go back to reference Hui, L., Li, X., Chen, J., He, H., Yang, J., et al.: Unsupervised multi-domain image translation with domain-specific encoders/decoders. arXiv preprint arXiv:1712.02050 (2017) Hui, L., Li, X., Chen, J., He, H., Yang, J., et al.: Unsupervised multi-domain image translation with domain-specific encoders/decoders. arXiv preprint arXiv:​1712.​02050 (2017)
51.
go back to reference Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH (2001) Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH (2001)
52.
go back to reference Li, C., Wand, M.: Combining markov random fields and convolutional neural networks for image synthesis. In: CVPR (2016) Li, C., Wand, M.: Combining markov random fields and convolutional neural networks for image synthesis. In: CVPR (2016)
54.
go back to reference Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017) Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)
55.
go back to reference Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. In: NIPS, pp. 385–395 (2017) Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. In: NIPS, pp. 385–395 (2017)
57.
go back to reference Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: NIPS (2016) Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: NIPS (2016)
58.
go back to reference Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017) Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)
59.
go back to reference Tenenbaum, J.B., Freeman, W.T.: Separating style and content. In: NIPS (1997) Tenenbaum, J.B., Freeman, W.T.: Separating style and content. In: NIPS (1997)
60.
go back to reference Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: NIPS (2016) Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: NIPS (2016)
61.
go back to reference Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. In: ICLR (2017) Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. In: ICLR (2017)
62.
go back to reference Mathieu, M.F., Zhao, J.J., Zhao, J., Ramesh, A., Sprechmann, P., LeCun, Y.: Disentangling factors of variation in deep representation using adversarial training. In: NIPS (2016) Mathieu, M.F., Zhao, J.J., Zhao, J., Ramesh, A., Sprechmann, P., LeCun, Y.: Disentangling factors of variation in deep representation using adversarial training. In: NIPS (2016)
63.
go back to reference Denton, E.L., et al.: Unsupervised learning of disentangled representations from video. In: NIPS (2017) Denton, E.L., et al.: Unsupervised learning of disentangled representations from video. In: NIPS (2017)
64.
go back to reference Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MocoGAN: decomposing motion and content for video generation. In: CVPR (2018) Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MocoGAN: decomposing motion and content for video generation. In: CVPR (2018)
65.
go back to reference Donahue, C., Balsubramani, A., McAuley, J., Lipton, Z.C.: Semantically decomposing the latent spaces of generative adversarial networks. In: ICLR (2018) Donahue, C., Balsubramani, A., McAuley, J., Lipton, Z.C.: Semantically decomposing the latent spaces of generative adversarial networks. In: ICLR (2018)
66.
go back to reference Shen, T., Lei, T., Barzilay, R., Jaakkola, T.: Style transfer from non-parallel text by cross-alignment. In: Advances in Neural Information Processing Systems, pp. 6833–6844 (2017) Shen, T., Lei, T., Barzilay, R., Jaakkola, T.: Style transfer from non-parallel text by cross-alignment. In: Advances in Neural Information Processing Systems, pp. 6833–6844 (2017)
67.
go back to reference Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: ICLR (2017) Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: ICLR (2017)
68.
go back to reference Dumoulin, V., et al.: Adversarially learned inference. In: ICLR (2017) Dumoulin, V., et al.: Adversarially learned inference. In: ICLR (2017)
69.
go back to reference Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017) Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)
70.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
71.
go back to reference Ulyanov, D., Vedaldi, A., Lempitsky, V.: Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: CVPR (2017) Ulyanov, D., Vedaldi, A., Lempitsky, V.: Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: CVPR (2017)
72.
go back to reference Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: ICLR (2017) Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: ICLR (2017)
73.
go back to reference Wang, H., Liang, X., Zhang, H., Yeung, D.Y., Xing, E.P.: ZM-Net: real-time zero-shot image manipulation network. arXiv preprint arXiv:1703.07255 (2017) Wang, H., Liang, X., Zhang, H., Yeung, D.Y., Xing, E.P.: ZM-Net: real-time zero-shot image manipulation network. arXiv preprint arXiv:​1703.​07255 (2017)
74.
go back to reference Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., Shlens, J.: Exploring the structure of a real-time, arbitrary neural artistic stylization network. In: BMVC (2017) Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., Shlens, J.: Exploring the structure of a real-time, arbitrary neural artistic stylization network. In: BMVC (2017)
75.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
76.
go back to reference Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. arXiv preprint arXiv:1603.04779 (2016) Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. arXiv preprint arXiv:​1603.​04779 (2016)
77.
go back to reference Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018) Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
78.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems (2012)
79.
go back to reference Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016) Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)
80.
go back to reference Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: CVPR (2014) Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: CVPR (2014)
82.
go back to reference Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015) Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015)
83.
go back to reference Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR (2016) Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR (2016)
84.
go back to reference Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016) Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)
Metadata
Title
Multimodal Unsupervised Image-to-Image Translation
Authors
Xun Huang
Ming-Yu Liu
Serge Belongie
Jan Kautz
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-01219-9_11

Premium Partner