Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Multimodal Video Annotation for Retrieval and Discovery of Newsworthy Video in a News Verification Scenario

Authors: Lyndon Nixon, Evlampios Apostolidis, Foteini Markatopoulou, Ioannis Patras, Vasileios Mezaris

Published in: MultiMedia Modeling

Publisher: Springer International Publishing

share
SHARE

Abstract

This paper describes the combination of advanced technologies for social-media-based story detection, story-based video retrieval and concept-based video (fragment) labeling under a novel approach for multimodal video annotation. This approach involves textual metadata, structural information and visual concepts - and a multimodal analytics dashboard that enables journalists to discover videos of news events, posted to social networks, in order to verify the details of the events shown. It outlines the characteristics of each individual method and describes how these techniques are blended to facilitate the content-based retrieval, discovery and summarization of (parts of) news videos. A set of case-driven experiments conducted with the help of journalists, indicate that the proposed multimodal video annotation mechanism - combined with a professional analytics dashboard which presents the collected and generated metadata about the news stories and their visual summaries - can support journalists in their content discovery and verification work.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Apostolidis, E., Mezaris, V.: Fast shot segmentation combining global and local visual descriptors. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6583–6587 (2014) Apostolidis, E., Mezaris, V.: Fast shot segmentation combining global and local visual descriptors. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6583–6587 (2014)
2.
go back to reference Cooray, S.H., O’Connor, N.E.: Identifying an efficient and robust sub-shot segmentation method for home movie summarisation. In: 10th International Conference on Intelligent Systems Design and Applications, pp. 1287–1292 (2010) Cooray, S.H., O’Connor, N.E.: Identifying an efficient and robust sub-shot segmentation method for home movie summarisation. In: 10th International Conference on Intelligent Systems Design and Applications, pp. 1287–1292 (2010)
3.
go back to reference He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
4.
go back to reference Markatopoulou, F., Mezaris, V., et al.: Implicit and explicit concept relations in deep neural networks for multi-label video/image annotation. IEEE Trans. Circuits Syst. Video Technol. 1 (2018) Markatopoulou, F., Mezaris, V., et al.: Implicit and explicit concept relations in deep neural networks for multi-label video/image annotation. IEEE Trans. Circuits Syst. Video Technol. 1 (2018)
5.
go back to reference Nixon, L.J.B., Zhu, S., et al.: Video retrieval for multimedia verification of breaking news on social networks. In: 1st International Workshop on Multimedia Verification (MuVer 2017) at ACM Multimedia Conference, MuVer 2017, pp. 13–21. ACM (2017) Nixon, L.J.B., Zhu, S., et al.: Video retrieval for multimedia verification of breaking news on social networks. In: 1st International Workshop on Multimedia Verification (MuVer 2017) at ACM Multimedia Conference, MuVer 2017, pp. 13–21. ACM (2017)
6.
go back to reference Over, P.D., Fiscus, J.G., et al.: TRECVID 2013-An overview of the goals, tasks, data, evaluation mechanisms and metrics. In: TRECVID 2013. NIST, USA (2013) Over, P.D., Fiscus, J.G., et al.: TRECVID 2013-An overview of the goals, tasks, data, evaluation mechanisms and metrics. In: TRECVID 2013. NIST, USA (2013)
7.
go back to reference Pan, C.M., Chuang, Y.Y., et al.: NTU TRECVID-2007 fast rushes summarization system. In: TRECVID Workshop on Video Summarization, pp. 74–78. ACM (2007) Pan, C.M., Chuang, Y.Y., et al.: NTU TRECVID-2007 fast rushes summarization system. In: TRECVID Workshop on Video Summarization, pp. 74–78. ACM (2007)
9.
go back to reference Rublee, E., Rabaud, V., et al.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571 (2011) Rublee, E., Rabaud, V., et al.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571 (2011)
10.
go back to reference Russakovsky, O., Deng, J., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015) MathSciNetCrossRef Russakovsky, O., Deng, J., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015) MathSciNetCrossRef
11.
go back to reference Seo, K., Park, S.J., et al.: Wipe scene-change detector based on visual rhythm spectrum. IEEE Trans. Consum. Electron. 55(2), 831–838 (2009) CrossRef Seo, K., Park, S.J., et al.: Wipe scene-change detector based on visual rhythm spectrum. IEEE Trans. Consum. Electron. 55(2), 831–838 (2009) CrossRef
12.
go back to reference Su, C.W., Tyan, H.R., et al.: A motion-tolerant dissolve detection algorithm. IEEE Int. Conf. Multimedia Expo. 2, 225–228 (2002) CrossRef Su, C.W., Tyan, H.R., et al.: A motion-tolerant dissolve detection algorithm. IEEE Int. Conf. Multimedia Expo. 2, 225–228 (2002) CrossRef
13.
go back to reference Szegedy, C., Liu, W., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (2015) Szegedy, C., Liu, W., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)
14.
go back to reference Teyssou, D., Leung, J.M., et al.: The InVID plug-in: web video verification on the browser. In: 1st International Workshop on Multimedia Verification (MuVer 2017) at ACM Multimedia Conference, pp. 23–30. ACM (2017) Teyssou, D., Leung, J.M., et al.: The InVID plug-in: web video verification on the browser. In: 1st International Workshop on Multimedia Verification (MuVer 2017) at ACM Multimedia Conference, pp. 23–30. ACM (2017)
Metadata
Title
Multimodal Video Annotation for Retrieval and Discovery of Newsworthy Video in a News Verification Scenario
Authors
Lyndon Nixon
Evlampios Apostolidis
Foteini Markatopoulou
Ioannis Patras
Vasileios Mezaris
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05710-7_12