Skip to main content
Top

2019 | OriginalPaper | Chapter

Multiphase-Field Modeling and Simulation of Martensitic Phase Transformation in Heterogeneous Materials

Authors : E. Schoof, C. Herrmann, D. Schneider, J. Hötzer, B. Nestler

Published in: High Performance Computing in Science and Engineering ' 18

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The martensitic phase transformation is an important mechanism which strongly changes the properties of the material. On the one hand, martensite is a widely used and purposefully produced constituent of many high-strength steels. On the other hand, martensite can also lead in some cases to an unwanted embrittlement of the material, so that this transformation has to be prevented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Hofmann, D. Matissen, T.W. Schaumann, Advanced cold-rolled steels for automotive applications. Steel Res. Int. 80(1), 22–28 (2009) H. Hofmann, D. Matissen, T.W. Schaumann, Advanced cold-rolled steels for automotive applications. Steel Res. Int. 80(1), 22–28 (2009)
2.
go back to reference K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater. Sci. Eng.: A 604, 135–141 (2014)CrossRef K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater. Sci. Eng.: A 604, 135–141 (2014)CrossRef
3.
go back to reference S. Panier, P. Dufrénoy, D. Weichert, An experimental investigation of hot spots in railway disc brakes. Wear 256(7–8), 764–773 (2004)CrossRef S. Panier, P. Dufrénoy, D. Weichert, An experimental investigation of hot spots in railway disc brakes. Wear 256(7–8), 764–773 (2004)CrossRef
4.
go back to reference I. Steinbach, Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009)CrossRef I. Steinbach, Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009)CrossRef
5.
go back to reference I. Steinbach, Phase-field model for microstructure evolution at the mesoscopic scale. Annu. Rev. Mater. Res. 43, 89–107 (2013)CrossRef I. Steinbach, Phase-field model for microstructure evolution at the mesoscopic scale. Annu. Rev. Mater. Res. 43, 89–107 (2013)CrossRef
6.
go back to reference R. Spatschek, E. Brener, A. Karma, Phase field modeling of crack propagation. Philos. Mag. 91(1), 75–95 (2011)CrossRef R. Spatschek, E. Brener, A. Karma, Phase field modeling of crack propagation. Philos. Mag. 91(1), 75–95 (2011)CrossRef
7.
go back to reference E. Schoof, D. Schneider, N. Streichhan, T. Mittnacht, M. Selzer, B. Nestler, Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure. Int. J. Solids Struct. 134, 181–194 (2018)CrossRef E. Schoof, D. Schneider, N. Streichhan, T. Mittnacht, M. Selzer, B. Nestler, Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure. Int. J. Solids Struct. 134, 181–194 (2018)CrossRef
8.
go back to reference B. Nestler, H. Garcke, B. Stinner, Multicomponent alloy solidification: phase-field modeling and simulations. Phys. Rev. E 71(4), 041609 (2005)CrossRef B. Nestler, H. Garcke, B. Stinner, Multicomponent alloy solidification: phase-field modeling and simulations. Phys. Rev. E 71(4), 041609 (2005)CrossRef
9.
go back to reference J. Hötzer, O. Tschukin, M. Ben Said, M. Berghoff, M. Jainta, G. Barthelemy, N. Smorchkov, D. Schneider, M. Selzer, B. Nestler, Calibration of a multi-phase field model with quantitative angle measurement. J. Mater. Sci. 51(4), 1788–1797 (2016)CrossRef J. Hötzer, O. Tschukin, M. Ben Said, M. Berghoff, M. Jainta, G. Barthelemy, N. Smorchkov, D. Schneider, M. Selzer, B. Nestler, Calibration of a multi-phase field model with quantitative angle measurement. J. Mater. Sci. 51(4), 1788–1797 (2016)CrossRef
10.
go back to reference I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields. Phys. D: Nonlinear Phenom. 134(4), 385–393 (1999)MathSciNetCrossRef I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields. Phys. D: Nonlinear Phenom. 134(4), 385–393 (1999)MathSciNetCrossRef
11.
go back to reference A. Yamanaka, T. Takaki, Y. Tomita, Elastoplastic phase-field simulation of self- and plastic accommodations in cubic to tetragonal martensitic transformation. Mater. Sci. Eng. A 491(1–2), 378–384 (2008)CrossRef A. Yamanaka, T. Takaki, Y. Tomita, Elastoplastic phase-field simulation of self- and plastic accommodations in cubic to tetragonal martensitic transformation. Mater. Sci. Eng. A 491(1–2), 378–384 (2008)CrossRef
12.
go back to reference D. Schneider, O. Tschukin, A. Choudhury, M. Selzer, T. Böhlke, B. Nestler, Phase-field elasticity model based on mechanical jump conditions. Comput. Mech. 55(5), 887–901 (2015)MathSciNetCrossRef D. Schneider, O. Tschukin, A. Choudhury, M. Selzer, T. Böhlke, B. Nestler, Phase-field elasticity model based on mechanical jump conditions. Comput. Mech. 55(5), 887–901 (2015)MathSciNetCrossRef
13.
go back to reference D. Schneider, E. Schoof, O. Tschukin, A. Reiter, C. Herrmann, F. Schwab, M. Selzer, B. Nestler, Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions. Comput. Mech. 61(3), 277–295 (2018)MathSciNetCrossRef D. Schneider, E. Schoof, O. Tschukin, A. Reiter, C. Herrmann, F. Schwab, M. Selzer, B. Nestler, Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions. Comput. Mech. 61(3), 277–295 (2018)MathSciNetCrossRef
14.
go back to reference D. Schneider, F. Schwab, E. Schoof, A. Reiter, C. Herrmann, M. Selzer, T. Böhlke, B. Nestler, On the stress calculation within phase-field approaches: a model for finite deformations. Comput. Mech. 60(2), 203–217 (2017)MathSciNetCrossRef D. Schneider, F. Schwab, E. Schoof, A. Reiter, C. Herrmann, M. Selzer, T. Böhlke, B. Nestler, On the stress calculation within phase-field approaches: a model for finite deformations. Comput. Mech. 60(2), 203–217 (2017)MathSciNetCrossRef
15.
go back to reference C. Herrmann, E. Schoof, D. Schneider, F. Schwab, A. Reiter, M. Selzer, B. Nestler, Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions. Comput. Mech. (2018) (in print) C. Herrmann, E. Schoof, D. Schneider, F. Schwab, A. Reiter, M. Selzer, B. Nestler, Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions. Comput. Mech. (2018) (in print)
16.
go back to reference J. Hötzer, A. Reiter, H. Hierl, P. Steinmetz, M. Selzer, B. Nestler, The parallel multi-physics phase-field framework Pace3d. J. Comput. Sci. 26, 1–12 (2018)MathSciNetCrossRef J. Hötzer, A. Reiter, H. Hierl, P. Steinmetz, M. Selzer, B. Nestler, The parallel multi-physics phase-field framework Pace3d. J. Comput. Sci. 26, 1–12 (2018)MathSciNetCrossRef
17.
go back to reference K. Ankit, B. Nestler, M. Selzer, M. Reichardt, Phase-field study of grain boundary tracking behavior in crack-seal microstructures. Contrib. Mineral. Petrol. 166(6), 1709–1723 (2013)CrossRef K. Ankit, B. Nestler, M. Selzer, M. Reichardt, Phase-field study of grain boundary tracking behavior in crack-seal microstructures. Contrib. Mineral. Petrol. 166(6), 1709–1723 (2013)CrossRef
18.
go back to reference K. Ankit, J.L. Urai, B. Nestler, Microstructural evolution in bitaxial crack-seal veins: a phase-field study. J. Geophys. Res. B: Solid Earth 120(5), 3096–3118 (2015)CrossRef K. Ankit, J.L. Urai, B. Nestler, Microstructural evolution in bitaxial crack-seal veins: a phase-field study. J. Geophys. Res. B: Solid Earth 120(5), 3096–3118 (2015)CrossRef
19.
go back to reference K. Ankit, M. Selzer, C. Hilgers, B. Nestler, Phase-field modeling of fracture cementation processes in 3-d. J. Pet. Sci. Res. 4(2), 79–96 (2015) K. Ankit, M. Selzer, C. Hilgers, B. Nestler, Phase-field modeling of fracture cementation processes in 3-d. J. Pet. Sci. Res. 4(2), 79–96 (2015)
20.
go back to reference A. Vondrous, in Grain Growth Behavior and Efficient Large Scale Simulations of Recrystallization with the Phase-Field Method, vol. 44 (KIT Scientific Publishing, 2014) A. Vondrous, in Grain Growth Behavior and Efficient Large Scale Simulations of Recrystallization with the Phase-Field Method, vol. 44 (KIT Scientific Publishing, 2014)
21.
go back to reference M. Selzer, in Mechanische und Strömungsmechanische Topologieoptimierung mit der Phasenfeldmethode (KIT Scientific Publishing, 2014) M. Selzer, in Mechanische und Strömungsmechanische Topologieoptimierung mit der Phasenfeldmethode (KIT Scientific Publishing, 2014)
22.
go back to reference A. Choudhury, M. Geeta, B. Nestler, Influence of solid-solid interface anisotropy on three-phase eutectic growth during directional solidification. EPL (Eur. Lett.) 101(2), 26001 (2013)CrossRef A. Choudhury, M. Geeta, B. Nestler, Influence of solid-solid interface anisotropy on three-phase eutectic growth during directional solidification. EPL (Eur. Lett.) 101(2), 26001 (2013)CrossRef
23.
go back to reference A. Choudhury, Pattern-formation during self-organization in three-phase eutectic solidification. Trans. Indian Inst. Metals 1–7 (2015) A. Choudhury, Pattern-formation during self-organization in three-phase eutectic solidification. Trans. Indian Inst. Metals 1–7 (2015)
24.
go back to reference J. Ettrich, Fluid Flow and Heat Transfer in Cellular Solids, vol. 39 (KIT Scientific Publishing, 2014) J. Ettrich, Fluid Flow and Heat Transfer in Cellular Solids, vol. 39 (KIT Scientific Publishing, 2014)
25.
go back to reference D. Schneider, S. Schmid, M. Selzer, T. Böhlke, B. Nestler, Small strain elasto-plastic multiphase-field model. Comput. Mech. 55(1), 27–35 (2015)MathSciNetCrossRef D. Schneider, S. Schmid, M. Selzer, T. Böhlke, B. Nestler, Small strain elasto-plastic multiphase-field model. Comput. Mech. 55(1), 27–35 (2015)MathSciNetCrossRef
26.
go back to reference C. Mennerich, in Phase-Field Modeling of Multi-domain Evolution in Ferromagnetic Shape Memory Alloys and of Polycrystalline Thin Film Growth, vol. 19 (KIT Scientific Publishing, 2013) C. Mennerich, in Phase-Field Modeling of Multi-domain Evolution in Ferromagnetic Shape Memory Alloys and of Polycrystalline Thin Film Growth, vol. 19 (KIT Scientific Publishing, 2013)
27.
go back to reference A. Mukherjee, K. Ankit, R. Mukherjee, B. Nestler, Phase-field modeling of grain-boundary grooving under electromigration. J. Electron. Mater. 45(12), 6233–6246 (2016)CrossRef A. Mukherjee, K. Ankit, R. Mukherjee, B. Nestler, Phase-field modeling of grain-boundary grooving under electromigration. J. Electron. Mater. 45(12), 6233–6246 (2016)CrossRef
28.
go back to reference M. Ben Said, M. Selzer, B. Nestler, D. Braun, C. Greiner, H. Garcke, A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces. Langmuir 30(14), 4033–4039 (2014)CrossRef M. Ben Said, M. Selzer, B. Nestler, D. Braun, C. Greiner, H. Garcke, A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces. Langmuir 30(14), 4033–4039 (2014)CrossRef
29.
go back to reference F. Weyer, M. Ben Said, J. Hötzer, M. Berghoff, L. Dreesen, B. Nestler, N. Vandewalle, Compound droplets on fibers. Langmuir 31(28), 7799–7805 (2015) (PMID: 26090699)CrossRef F. Weyer, M. Ben Said, J. Hötzer, M. Berghoff, L. Dreesen, B. Nestler, N. Vandewalle, Compound droplets on fibers. Langmuir 31(28), 7799–7805 (2015) (PMID: 26090699)CrossRef
30.
go back to reference M. Ueda, H. Yasuda, Y. Umakoshi, Effect of grain boundary on martensite transformation behaviour in Fe32 at.% Ni bicrystals. Sci. Technol. Adv. Mater. 3(2), 171–179 (2002) M. Ueda, H. Yasuda, Y. Umakoshi, Effect of grain boundary on martensite transformation behaviour in Fe32 at.% Ni bicrystals. Sci. Technol. Adv. Mater. 3(2), 171–179 (2002)
31.
go back to reference Q.P. Meng, Y.H. Rong, T.Y. Hsu, Effect of internal stress on autocatalytic nucleation of martensitic transformation. Metall. Mater. Trans. A 37(5), 1405–1411 (2006)CrossRef Q.P. Meng, Y.H. Rong, T.Y. Hsu, Effect of internal stress on autocatalytic nucleation of martensitic transformation. Metall. Mater. Trans. A 37(5), 1405–1411 (2006)CrossRef
32.
go back to reference S. Morito, J. Nishikawa, T. Maki, Dislocation density within lath martensite in Fe-C and Fe-Ni alloys. ISIJ Int. 43(9), 1475–1477 (2003)CrossRef S. Morito, J. Nishikawa, T. Maki, Dislocation density within lath martensite in Fe-C and Fe-Ni alloys. ISIJ Int. 43(9), 1475–1477 (2003)CrossRef
33.
go back to reference T.A. Pascal, N. Karasawa, W.A. Goddard III, Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite. J. Chem. Phys. 133(13), 134114 (2010)CrossRef T.A. Pascal, N. Karasawa, W.A. Goddard III, Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite. J. Chem. Phys. 133(13), 134114 (2010)CrossRef
34.
go back to reference D. Schneider, E. Schoof, Y. Huang, M. Selzer, B. Nestler, Phase-field modeling of crack propagation in multiphase systems. Comput. Methods Appl. Mech. Eng. 312, 186–195 (2016)MathSciNetCrossRef D. Schneider, E. Schoof, Y. Huang, M. Selzer, B. Nestler, Phase-field modeling of crack propagation in multiphase systems. Comput. Methods Appl. Mech. Eng. 312, 186–195 (2016)MathSciNetCrossRef
Metadata
Title
Multiphase-Field Modeling and Simulation of Martensitic Phase Transformation in Heterogeneous Materials
Authors
E. Schoof
C. Herrmann
D. Schneider
J. Hötzer
B. Nestler
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13325-2_30

Premium Partner