Skip to main content
Top
Published in: Calcolo 1/2023

01-03-2023

Multiphysics finite element method for a nonlinear poroelasticity model with finite strain

Authors: Zhihao Ge, Hui Lou

Published in: Calcolo | Issue 1/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose a fully discrete multiphysics finite element method to solve a nonlinear poroelasticity model with finite strain. To reveal the multi-physical processes of deformation and diffusion and propose a stable numerical method, we reformulate the original model into a fluid–fluid coupled problem—a generalized nonlinear Stokes problem of displacement vector field and pseudo pressure field and a diffusion problem of other pseudo pressure field by a new technique. Then, we propose a multiphysics finite element method to approximate the spatial variables and use Newton method to solve the nonlinear problem, prove that the proposed numerical method is stable and has the optimal convergence orders, and give some numerical tests to show that the proposed numerical method is stable and has no oscillation for displacement and pressure. Finally, we draw conclusions to summary the main results of this work.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berger, L., Bordas, R., Kay, D., Tavener, S.: A stabilized finite element method for finite-strain three-field poroelasticity. Comput. Mech. 60, 51–68 (2017)MathSciNetCrossRefMATH Berger, L., Bordas, R., Kay, D., Tavener, S.: A stabilized finite element method for finite-strain three-field poroelasticity. Comput. Mech. 60, 51–68 (2017)MathSciNetCrossRefMATH
3.
go back to reference Vuong, A.T., Yoshihara, L., Wall, V.: A general approach for modeling interacting flow through porous media under finite deformations. Comput. Methods Appl. Mech. Eng. 00, 1–21 (2014)MATH Vuong, A.T., Yoshihara, L., Wall, V.: A general approach for modeling interacting flow through porous media under finite deformations. Comput. Methods Appl. Mech. Eng. 00, 1–21 (2014)MATH
4.
go back to reference Pao, W., Lewis, R., Masters, I.: A fully coupled hydro-thermo-poro-mechanical model for black oil reservoir simulation. Int. J. Numer. Anal. Methods Geomech. 25, 1229–1256 (2001)CrossRefMATH Pao, W., Lewis, R., Masters, I.: A fully coupled hydro-thermo-poro-mechanical model for black oil reservoir simulation. Int. J. Numer. Anal. Methods Geomech. 25, 1229–1256 (2001)CrossRefMATH
5.
go back to reference Ferronato, M., Gambolati, G., Teatini, P.: Radioactive marker measurements in heterogeneous reservoirs: numerical study. Int. J. Geomech. 4, 79–92 (2004)CrossRef Ferronato, M., Gambolati, G., Teatini, P.: Radioactive marker measurements in heterogeneous reservoirs: numerical study. Int. J. Geomech. 4, 79–92 (2004)CrossRef
6.
go back to reference Yin, S., Dusseault, M., Rothenburg, L.: Thermal reservoir modeling in petroleum geomechanics. Int. J. Numer. Anal. Methods Geomech. 33, 449–485 (2009)CrossRefMATH Yin, S., Dusseault, M., Rothenburg, L.: Thermal reservoir modeling in petroleum geomechanics. Int. J. Numer. Anal. Methods Geomech. 33, 449–485 (2009)CrossRefMATH
7.
go back to reference Hudson, J., Stephansson, O., Andersson, J., Tsang, C., Ling, L.: Coupled T-H-M issues related to radioactive waste repository design and performance. Int. J. Rock Mech. Min. Sci. 38, 143–161 (2001)CrossRef Hudson, J., Stephansson, O., Andersson, J., Tsang, C., Ling, L.: Coupled T-H-M issues related to radioactive waste repository design and performance. Int. J. Rock Mech. Min. Sci. 38, 143–161 (2001)CrossRef
8.
go back to reference Ferronato, M., Castelletto, N., Gambolati, G.: A fully coupled 3-D mixed finite element model of Biot consolidation. J. Comput. Phys. 229(12), 4813–4830 (2010)CrossRefMATH Ferronato, M., Castelletto, N., Gambolati, G.: A fully coupled 3-D mixed finite element model of Biot consolidation. J. Comput. Phys. 229(12), 4813–4830 (2010)CrossRefMATH
9.
go back to reference Gawin, D., Baggio, P., Schrefler, B.: Coupled heat, water and gas flow in deformable porous media. Int. J. Numer. Methods Fluids 20, 969–978 (1995)CrossRefMATH Gawin, D., Baggio, P., Schrefler, B.: Coupled heat, water and gas flow in deformable porous media. Int. J. Numer. Methods Fluids 20, 969–978 (1995)CrossRefMATH
10.
go back to reference Callari, C., Abati, A.: Finite element methods for unsaturated porous solids and their application to dam engineering problems. Comput. Struct. 87, 485–501 (2009)CrossRef Callari, C., Abati, A.: Finite element methods for unsaturated porous solids and their application to dam engineering problems. Comput. Struct. 87, 485–501 (2009)CrossRef
11.
go back to reference You, L., Hongtan, L.: A two-phase flow and transport model for the cathode of PEM fuel cells. Int. J. Heat Mass Transf. 45, 2277–2287 (2001)CrossRefMATH You, L., Hongtan, L.: A two-phase flow and transport model for the cathode of PEM fuel cells. Int. J. Heat Mass Transf. 45, 2277–2287 (2001)CrossRefMATH
12.
go back to reference Nemec, D., Levec, J.: Flow through packed bed reactors: single-phase flow. Chem. Eng. Sci. 60, 6947–6957 (2005)CrossRef Nemec, D., Levec, J.: Flow through packed bed reactors: single-phase flow. Chem. Eng. Sci. 60, 6947–6957 (2005)CrossRef
13.
go back to reference Chapelle, D., Gerbeau, J., Sainte-Marie, J., Vignon-Clementel, I.: A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput. Mech. 46(1), 91–101 (2010)MathSciNetCrossRefMATH Chapelle, D., Gerbeau, J., Sainte-Marie, J., Vignon-Clementel, I.: A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput. Mech. 46(1), 91–101 (2010)MathSciNetCrossRefMATH
14.
go back to reference Cookson, A., Lee, J., Michler, C., et al.: A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J. Biomech. 45(5), 850–855 (2012)CrossRef Cookson, A., Lee, J., Michler, C., et al.: A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J. Biomech. 45(5), 850–855 (2012)CrossRef
15.
go back to reference Berger, L., Bordas, R., Burrowes, K., et al.: A poroelastic model coupled to a fluid network with applications in lung modelling. Int. J. Numer. Methods Biomed. Eng. 20, e02731 (2016)MathSciNet Berger, L., Bordas, R., Burrowes, K., et al.: A poroelastic model coupled to a fluid network with applications in lung modelling. Int. J. Numer. Methods Biomed. Eng. 20, e02731 (2016)MathSciNet
16.
go back to reference Holmes, M., Mow, V.: The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23(11), 1145–1156 (1990)CrossRef Holmes, M., Mow, V.: The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23(11), 1145–1156 (1990)CrossRef
17.
go back to reference Galbusera, F., Schmidt, H., Noailly, J., et al.: Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. J. Mech. Behav. Biomed. Mater. 4(7), 1234–1241 (2011)CrossRef Galbusera, F., Schmidt, H., Noailly, J., et al.: Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. J. Mech. Behav. Biomed. Mater. 4(7), 1234–1241 (2011)CrossRef
18.
go back to reference Galie, P., Spilker, R., Stegemann, J.: A linear, biphasic model incorporating a Brinkman term to describe the mechanics of cell-seeded collagen hydrogels. Ann. Biomed. Eng. 39(11), 2767–2779 (2011)CrossRef Galie, P., Spilker, R., Stegemann, J.: A linear, biphasic model incorporating a Brinkman term to describe the mechanics of cell-seeded collagen hydrogels. Ann. Biomed. Eng. 39(11), 2767–2779 (2011)CrossRef
19.
go back to reference Luboz, V., Pedrono, A., Ambard, D., Boutault, F., et al.: Prediction of tissue decompression in orbital surgery. Clin. Biomech. 19(2), 202–208 (2004)CrossRef Luboz, V., Pedrono, A., Ambard, D., Boutault, F., et al.: Prediction of tissue decompression in orbital surgery. Clin. Biomech. 19(2), 202–208 (2004)CrossRef
20.
go back to reference Mow, V., Kuei, S., Lai, W., et al.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980)CrossRef Mow, V., Kuei, S., Lai, W., et al.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980)CrossRef
21.
go back to reference Wirth, B., Sobey, I.: An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus. Math. Med. Biol. 23(4), 363–388 (2006)CrossRefMATH Wirth, B., Sobey, I.: An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus. Math. Med. Biol. 23(4), 363–388 (2006)CrossRefMATH
22.
go back to reference Phillips, P., Wheeler, M.: A coupling of mixed and continuous galerkin finite element menthods for porowlasticity I: the continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)MathSciNetCrossRefMATH Phillips, P., Wheeler, M.: A coupling of mixed and continuous galerkin finite element menthods for porowlasticity I: the continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)MathSciNetCrossRefMATH
23.
go back to reference Phillips, P., Wheeler, M.: A coupling of mixed and continuous galerkin finite element menthods for porowlasticity II: the discrete in time case. Comput. Geosci. 11(2), 145–158 (2007)MathSciNetCrossRef Phillips, P., Wheeler, M.: A coupling of mixed and continuous galerkin finite element menthods for porowlasticity II: the discrete in time case. Comput. Geosci. 11(2), 145–158 (2007)MathSciNetCrossRef
24.
go back to reference Rodrigo, C., Hu, X., Ohm, P., Adler, J.H., Gaspar, F.J., Zikatanov, L.T.: New stabilized discretizations for poroelasticity and the Stokes’s equations. Comput. Methods Appl. Mech. Eng. 341, 467–484 (2018)MathSciNetCrossRefMATH Rodrigo, C., Hu, X., Ohm, P., Adler, J.H., Gaspar, F.J., Zikatanov, L.T.: New stabilized discretizations for poroelasticity and the Stokes’s equations. Comput. Methods Appl. Mech. Eng. 341, 467–484 (2018)MathSciNetCrossRefMATH
25.
go back to reference Feng, X., Ge, Z., Li, Y.: Analysis of a multiphysics finite element method for a poroelasticity model. IMA J. Numer. Anal. 38(1), 330–359 (2018). arXiv:1411.7464 [math.NA] (2014) Feng, X., Ge, Z., Li, Y.: Analysis of a multiphysics finite element method for a poroelasticity model. IMA J. Numer. Anal. 38(1), 330–359 (2018). arXiv:​1411.​7464 [math.NA] (2014)
26.
go back to reference Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)MATH Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)MATH
27.
go back to reference Levenston, M., Frank, E., Grodzinsky, A.: Variationally derived 3-field finite element formulations for quasistatic poroelastic analysis of hydrated biological tissues. Comput. Methods Appl. Mech. Eng. 156, 231–246 (1998)MathSciNetCrossRefMATH Levenston, M., Frank, E., Grodzinsky, A.: Variationally derived 3-field finite element formulations for quasistatic poroelastic analysis of hydrated biological tissues. Comput. Methods Appl. Mech. Eng. 156, 231–246 (1998)MathSciNetCrossRefMATH
28.
go back to reference Almeida, E., Spilker, R.: Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues. Comput. Methods Appl. Mech. Eng. 151(3), 513–538 (1998)CrossRefMATH Almeida, E., Spilker, R.: Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues. Comput. Methods Appl. Mech. Eng. 151(3), 513–538 (1998)CrossRefMATH
29.
go back to reference Spilker, R., Suh, J.: Formulation and evaluation of a finite element model of soft hydrated tissue. Comput. Struct. 35, 425–439 (1990)CrossRefMATH Spilker, R., Suh, J.: Formulation and evaluation of a finite element model of soft hydrated tissue. Comput. Struct. 35, 425–439 (1990)CrossRefMATH
30.
go back to reference Suh, J., Spilker, R., Holmes, M.: A penalty finite element analysis for nonlinear mechanics of biphasic hydrated soft tissue under large deformation. Int. J. Numer. Methods Eng. 32, 1411–1439 (1991)CrossRefMATH Suh, J., Spilker, R., Holmes, M.: A penalty finite element analysis for nonlinear mechanics of biphasic hydrated soft tissue under large deformation. Int. J. Numer. Methods Eng. 32, 1411–1439 (1991)CrossRefMATH
31.
go back to reference Spilker, R.: A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations. J. Biomech. Eng. 128, 934–942 (2006)CrossRef Spilker, R.: A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations. J. Biomech. Eng. 128, 934–942 (2006)CrossRef
32.
go back to reference Feng, X., He, Y.: Fully discrete finite element approximations of a polymer gel model. SIAM J. Numer. Anal. 48(6), 2186–2217 (2010)MathSciNetCrossRefMATH Feng, X., He, Y.: Fully discrete finite element approximations of a polymer gel model. SIAM J. Numer. Anal. 48(6), 2186–2217 (2010)MathSciNetCrossRefMATH
33.
go back to reference Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, New York (1977)MATH Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, New York (1977)MATH
34.
go back to reference Brenner, S.: A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity. SIAM J. Numer. Anal. 30(1), 116–135 (1993)MathSciNetCrossRefMATH Brenner, S.: A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity. SIAM J. Numer. Anal. 30(1), 116–135 (1993)MathSciNetCrossRefMATH
35.
go back to reference Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)CrossRefMATH Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)CrossRefMATH
36.
go back to reference Dautray, R., Lions, J.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1. Springer, Berlin (1990)MATH Dautray, R., Lions, J.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1. Springer, Berlin (1990)MATH
37.
go back to reference Ge, Z., Li, H., Li, T.: Optimal error estimates of multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relations. arXiv:2205.07215 [math.NA] (2022) Ge, Z., Li, H., Li, T.: Optimal error estimates of multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relations. arXiv:​2205.​07215 [math.NA] (2022)
38.
39.
go back to reference Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (2010)MATH Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (2010)MATH
40.
go back to reference Brenner, S., Scoot, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)CrossRef Brenner, S., Scoot, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)CrossRef
41.
Metadata
Title
Multiphysics finite element method for a nonlinear poroelasticity model with finite strain
Authors
Zhihao Ge
Hui Lou
Publication date
01-03-2023
Publisher
Springer International Publishing
Published in
Calcolo / Issue 1/2023
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-022-00496-z

Other articles of this Issue 1/2023

Calcolo 1/2023 Go to the issue

Premium Partner