Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

31-03-2020 | Research Article-Computer Engineering and Computer Science | Issue 8/2020

Arabian Journal for Science and Engineering 8/2020

Multiple Batches of Motion History Images (MB-MHIs) for Multi-view Human Action Recognition

Journal:
Arabian Journal for Science and Engineering > Issue 8/2020
Authors:
Hajra Binte Naeem, Fiza Murtaza, Muhammad Haroon Yousaf, Sergio A. Velastin

Abstract

The recognition of human actions recorded in a multi-camera environment faces the challenging issue of viewpoint variation. Multi-view methods employ videos from different views to generate a compact view-invariant representation of human actions. This paper proposes a novel multi-view human action recognition approach that uses multiple low-dimensional temporal templates and a reconstruction-based encoding scheme. The proposed approach is based upon the extraction of multiple 2D motion history images (MHIs) of human action videos over non-overlapping temporal windows, constructing multiple batches of motion history images (MB-MHIs). Then, two kinds of descriptions are computed for these MHIs batches based on (1) a deep residual network (ResNet) and (2) histogram of oriented gradients (HOG) to effectively quantify a change in gradient. ResNet descriptions are average pooled at each batch. HOG descriptions are processed independently at each batch to learn a class-based dictionary using a K-spectral value decomposition algorithm. Later, the sparse codes of feature descriptions are obtained using an orthogonal matching pursuit approach. These sparse codes are average pooled to extract encoded feature vectors. Then, encoded feature vectors at each batch are fused to form a final view-invariant feature representation. Finally, a linear support vector machine classifier is trained for action recognition. Experimental results are given on three versions of a multi-view dataset: MuHAVi-8, MuHAVi-14, and MuHAVi-uncut. The proposed approach shows promising results when tested for a novel camera. Results on deep features indicate that action representation by MB-MHIs is more view-invariant than single MHIs.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Arabian Journal for Science and Engineering 8/2020 Go to the issue

Premium Partners

    Image Credits