Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

05-03-2020 | Original Article | Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020

Multiple-instance learning via multiple-point concept based instance selection

Journal:
International Journal of Machine Learning and Cybernetics > Issue 9/2020
Authors:
Liming Yuan, Guangping Xu, Lu Zhao, Xianbin Wen, Haixia Xu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Multiple-instance learning (MIL) is a kind of weakly supervised learning where a single label is assigned to a bag of instances. To solve MIL problems, researchers have presented an effective embedding based framework that projects bags into a new feature space, which is constructed from some selected instances that can represent target concepts to some extent. Most previous studies use single-point concepts for the instance selection, where every possible concept is represented by only a single point (i.e., instance). However, multiple points may be more powerful for the same concept than a single. In this paper, we propose the notion of multiple-point concept, jointly represented by a group of similar points, and then build an iterative instance-selection method for MIL upon Multiple-Point Concepts. The proposed algorithm is thus named MILMPC, and its main difference from other MIL algorithms is selecting instances via multiple-point concept rather than single-point concept. The experimental results on five data sets have validated the convergence of the iterative instance-selection method, and the generality of the resulting MIL model in that it performs consistently well under three different kinds of relevance evaluation criteria (used to measure the relevance of a candidate concept to the target). Furthermore, compared to other MIL algorithms, the proposed model has been demonstrated not only suitable for common MIL problems, but more suitable for hybrid problems.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020 Go to the issue